References
[1]. Aranda, M. L., Báez, R., & Diaz, O. G. (2010, September). Hybrid adders for high-speed arithmetic circuits: A comparison. In 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control (pp. 546-549). IEEE. https://doi.org/10.1109/ICEEE.2010.5608566
[2]. Chang, C. H., GU, J., & Zhang, M. (2005). A review of 0.18-μm full adder performances for tree structured arithmetic circuits. IEEE Transactions Very Large Scale Integration (VLSI) System, 13(6), 686–695. https://doi.org/ 10.1109/TVLSI.2005.848806.
[3]. Deb, P., & Majumder, A. (2016, March). Leakage reduction methodology of 1-bit full adder in 180nm CMOS technology. In 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS) (pp. 199-203). IEEE. https://doi.org/10.1109/ICDCSyst.2016.7570636
[4]. Goel, S., Elgamel, M. A., & Bayoumi, M. A. (2003, September). Novel design methodology for high-performance XOR-XNOR circuit design. In 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings. (pp. 71-76). IEEE. https://doi.org/ 10.1109/SBCCI.2003.1232809
[5]. Goel, S., Kumar, A., & Bayoumi, M. A. (2006). Design of robust, energy-efficient full adders for deepsubmicrometer design using hybrid-CMOS logic style. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(12), 1309-1321. https://doi.org/10.1109/ TVLSI.2006.887807
[6]. Pattnaik, S. K., Nanda, U., Nayak, D., Mohapatra, S. R., Nayak, A. B., & Mallick, A. (2017, May). Design and implementation of different types of full adders in ALU and leakage minimization. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 924- 927). IEEE.. https://doi.org/10.1109/ICOEI.2017.8300841
[7]. Rabaey, J. M., Chandrakasan, A. P., & Nikolic, B. (2002). Digital Integrated Circuits (2nd Ed). Delhi, India: Pearson Education, Retrieved from http://bwrcs.eecs. berkeley.edu/Classes/IcBook/tocv3.pdf
[8]. Radhakrishnan, D. (2001). Low-voltage low-power CMOS full adder. IEE Proceedings-Circuits, Devices and Systems, 148(1), 19-24. https://doi.org/10.1049/ipcds: 20010170
[9]. Shams, A. M., Darwish, T. K., & Bayoumi, M. A. (2002). Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(1), 20-29. https://doi.org/10.1109/ 92.988727
[10]. Shin, K., & Kim, T. (2004). Leakage power minimisation in arithmetic circuits. Electronics Letters, 40(7), 415-417. https://doi.org/10.1049/el:20040282
[11]. Sudsakorn, A., Tooprakai, S., & Dejhan, K. (2012). Low power CMOS full adder cells. In 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, (pp. 1-4). https://doi.org/10.1109/ECTICon. 2012.6254174
[12]. Tung, C. K., Hung, Y. C., Shieh, S. H., & Huang, G. S. (2007, April). A low-power high-speed hybrid CMOS full adder for embedded system. In 2007 IEEE Design and Diagnostics of Electronic Circuits and Systems (pp. 1-4). IEEE. https://doi.org/10.1109/DDECS.2007.4295280
[13]. Vesterbacka, M. (1999, October). A 14-transistor CMOS full adder with full voltage-swing nodes. In 1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No. 99TH8461) (pp. 713-722). IEEE. https://doi.org/10.1109/SIPS.1999.822379
[14]. Wairya, S., Singh, G., Nagaria, R. K., & Tiwari, S. (2011, December). Design analysis of XOR (4T) based low voltage CMOS full adder circuit. In 2011 Nirma University International Conference on Engineering (pp. 1-7). IEEE. https://doi.org/10.1109/NUiConE.2011.6153275
[15]. Zimmermann, R., & Fichtner, W. (1997). Low-power logic styles: CMOS versus pass-transistor logic. IEEE Journal of Solid-state Circuits, 32 (7), 1079-1090. https://doi.org/10.1109/4.597298