In this paper, Syntherized Zinc-Barium-Borate glasses are doped with various concentration of titanium ion and are characterized by an XRD. The starting material of the glass system is ZnO-BaO-B2O3:TiO2 glasses, which are prepared by conventional melt quenching technique. Densities are measured. Optical absorption spectra and FTIR spectra were recorded at room temperature. Optical absorption studies indicate that the titanium ions do exist in Ti3+ and Ti4+ state. As the content of TiO2 increases, Ti3+ ions acts as modifiers and these may induce NBO’s in the glass network and reduce the samll portion of Ti4+ ions to Ti3+ ions. The IR spectral studies indicate that the structure of these glasses consist of BO3 and BO4 groups randomly connected with linkages B-O-B, Zn-O-Zn, B-O-Zn. Finally, the structural changes in the host glass are analyzed with a small variation in the TiO2 concentration. From the results, it can be concluded that the effects of Ti3+ ions in lead borate glasses is dominated by Ti4+ ions.