References
[1]. Aazam, M., & Huh, E. N. (2016). Fog computing: The cloud-iot\/ioe middleware paradigm. IEEE Potentials, 35(3), 40-44.
[2]. Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmood, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87-111.
[3]. Aslanpour, M. S., Ghobaei-Arani, M., & Toosi, A. N. (2017). Auto-scaling web applications in clouds: A costaware approach. Journal of Network and Computer Applications, 95, 26-41.
[4]. Bui, D. M., Yoon, Y., Huh, E. N., Jun, S., & Lee, S. (2017). Energy efficiency for cloud computing system based on predictive optimization. Journal of Parallel and Distributed Computing, 102, 103-114.
[5]. Caron, E., Desprez, F., & Muresan, A. (2010, November). Forecasting for grid and cloud computing on-demand resources based on pattern matching. In 2010 IEEE Second International Conference on Cloud Computing Technology and Science (pp. 456-463). IEEE.
[6]. Ghomi, E. J., Rahmani, A. M., & Qader, N. N. (2017). Load-balancing algorithms in cloud computing: A survey. Journal of Network and Computer Applications, 88, 50- 71.
[7]. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P., Kolodziej, J., Balaji, P., ... & Khan, S. U. (2016). A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing, 98(7), 751-774.
[8]. Hourdakis, J., Morris, T., Michalopoulos, P., & Wood, K. (2005). Advanced portable wireless measurement and observation station. Final Report, University of Minneseta.
[9]. Kawamura, A., Yoshimitsu, Y., Kajitani, K., Naito, T., Fujimura, K., & Kamijo, S. (2011, October). Smart camera network system for use in railway stations. In 2011 IEEE International Conference on Systems, Man, and Cybernetics (pp. 85-90). IEEE.
[10]. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Maasberg, M., & Choo, K. K. R. (2018). Multimedia big data computing and Internet of Things applications: A taxonomy and process model. Journal of Network and Computer Applications, 124, 169-195.
[11]. Leader, S. (2004). Telecommunications handbook for transportation professionals: The basics of telecommunications (No. FHWA-HOP-04-034). United States. Federal Highway Administration.
[12]. Li, N., Yan, B., Chen, G., Govindaswamy, P., & Wang, J. (2010). Design and implementation of a sensor-based wireless camera system for continuous monitoring in assistive environments. Personal and Ubiquitous Computing, 14(6), 499-510.
[13]. Luo, N. (2011). A wireless traffic surveillance system using video analytics (Doctoral dissertation, University of North Texas).
[14]. Manvi, S. S., & Shyam, G. K. (2014). Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey. Journal of Network and Computer Applications, 41, 424-440.
[15]. Sahni, Y., Cao, J., Zhang, S., & Yang, L. (2017). Edge Mesh: A new paradigm to enable distributed intelligence in Internet of Things. IEEE Access, 5, 16441-16458.
[16]. Sharkh, M. A., & Shami, A. (2017). An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Vehicular Communications, 9, 199-210.
[17]. Sun, L. N. (2014). Building intelligent parking lot based on RFID and cloud computing technology. In Advanced Materials Research (Vol. 846, pp. 1550-1553). Trans Tech Publications.
[18]. Vázquez-Poletti, J. L., Moreno-Vozmediano, R., Han, R., Wang, W., & Llorente, I. M. (2017). SaaS enabled admission control for MCMC simulation in cloud computing infrastructures. Computer Physics Communications, 211, 88-97.
[19]. Wang, W., De, S., Toenjes, R., Reetz, E., & Moessner, K. (2012, June). A comprehensive ontology for knowledge representation in the internet of things. In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 1793- 1798). IEEE.
[20]. Zhu, W., Zhuang, Y., & Zhang, L. (2017). A three-dimensional virtual resource scheduling method for energy saving in cloud computing. Future Generation Computer Systems, 69, 66-74.