Realization of a Narrow Beamwidth Scanning Technique of a Biological Target in Microwave Tomography

Deborsi Basu*, Kabita Purkait**
*_**Department of Electronics and Communication Engineering, Kalyani Government Engineering College, West Bengal, India.
Periodicity:June - August'2019


In this paper, a realization of a narrow beamwidth scanning approach of a semi-human sized biological target has been done. This approach will be very much helpful for different scanning and image reconstruction techniques used in Microwave Tomography Technique (MTT). Sometimes the difficulty in scanning arises due to the presence of cancerous tumors or affected cells inside the inner regions of human body organ. Identification of the actual region becomes tough using ray analysis techniques. Wide beamwidth scanning makes things more complex. Hence, selection of diagnosis techniques and medicines become difficult. Here, a narrow beamwidth scanning approach has been implemented using a simulation model that can provide a solution to the wide beamwidth scanning problems. A suitable biological human body model has been considered and placed inside a nearfield position in between the transmitter and the receiver. Based on the scanning orientations, the data are collected at the receiver end and analyzed to identify the actual positions of the affected cells inside the model. The output generates satisfactory and accurate results. So, based on this analysis this can be claimed that using the proposed technique in MTT, more accurate diseased cell identification can be done.


Narrow Beamwidth Scanning, MTT, Image Reconstruction Technique, Ray Analysis.

How to Cite this Article?

Basu, D., & Purkait, K. (2019). Realization of a Narrow Beamwidth Scanning Technique of a Biological Target in Microwave Tomography. i-manager's Journal on Electronics Engineering, 9(4), 12-18.


[1]. Belkebir, K., Kleinman, R. E., & Pichot, C. (1997). Microwave imaging-location and shape reconstruction from multifrequency scattering data. IEEE Transactions on Microwave Theory and Techniques, 45(4), 469-476.
[2]. Bolomey, J. C., Jofre, L., & Peronnet, G. (1983). On the possible use of microwave-active imaging for remote thermal sensing. IEEE Transactions on Microwave Theory and Techniques, 31(9), 777-781. TMTT.1983.1131592
[3]. Bond, E. J., Li, X., Hagness, S. C., & Van Veen, B. D. (2003). Microwave imaging viaspace-time beamforming for early detection of breast cancer. IEEE Transactions on Antennas and Propagation, 51(8), 1690- 1705.
[4]. Datta, A. N., & Bandyopadhyay, B. (1986). Nonlinear extension to a moment method iterative reconstruction algorithm for microwave tomography. Proceedings of the IEEE, 74(4), 604-606. 13508
[5]. Datta, A. N., & Bandyopadhyay, D. B. (1985). An improved SIRT-style reconstruction algorithm for microwave tomography. IEEE Transactions on Biomedical Engineering, 32(9), 719-723. TBME.1985. 325591
[6]. Fang, Q., Meaney, P. M., Geimer, S. D., Streltsov, A. V., & Paulsen, K. D. (2004). Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation. IEEE Transactions on Medical Imaging, 23(4), 475-484.
[7]. Jacobi, J. H., Larsen, L. E., & Hast, C. T. (1979). Waterimmersed microwave antennas and their application to microwave interrogation of biological targets. IEEE Transactions on Microwave Theory and Techniques, 27(1), 70-78.
[8]. Joisel, A., Mallorqui, J., Broquetas, A., Geffrin, J. M., Joachimowicz, N., Iossera, M. V., Jofre, L., & Bolomey, J. C. (1999). Microwave Imaging Techniques for Biomedical Applications. IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309) (Vol. 3, pp. 1591- 1596).
[9]. Larsen, L. E., & Jacobi, J. H. (1979). Microwave scattering parameter imagery of an isolated canine kidney. Medical Physics, 6(5), 394-403. 1118/1.594595
[10]. Li, D., Meaney, P. M., & Paulsen, K. D. (2003). Conformal microwave imaging for breast cancer detection. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1179-1186. TMTT.2003. 809624
[11]. Liu, Q. H., Zhang, Z. Q., Wang, T. T., Bryan, J. A., Ybarra, G. A., Nolte, L. W., & Joines, W. T. (2002). Active microwave imaging. I. 2-D forward and inverse scattering methods. IEEE Transactions on Microwave Theory and Techniques, 50(1), 123-133. 981256
[12]. Maini, R., Iskander, M. F., & Durney, C. H. (1980). On the electromagnetic imaging using linear reconstruction techniques. Proceedings of the IEEE, 68(12), 1550-1552.
[13]. Maini, R., Iskander, M. F., Durney, C. H., & Berggren, M. (1981). On the sensitivity and the resolution of microwave imaging using ART. Proceedings of the IEEE, 69(11), 1517-1519. 12193
[14]. Marinova, I., & Mateev, V. (2010). Determination of electromagnetic properties of human tissues. World Acad. Sci. Eng. Tech., 42(4), 733-737.
[15]. Ostadrahimi, M., Zakaria, A., Mojabi, P., LoVetri, J., & Shafai, L. (2012, July). Evaluation of a microwave tomography system for animal tissue imaging. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (pp. 8-14). IEEE. https://doi. org/10.1109/APS.2012.6348546
[16]. Pan, S., & Kak, A. (1983). A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered-backpropagation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31(5), 1262-1275. TASSP.1983. 1164196
[17]. Purkait, K., & Datta, A. N. (2003). An Exact Algorithm for Microwave Tomography. Symposium HOT-2003.
[18]. Purkait, K., Basu, D., & Das, N. R. (2018b). Study of Beamwidth variation of Dipole Array Antenna for Microwave Scanning of Biological Target. International Journal on Recent and Innovation Trends in Computing and Communication, 6(1), 120-123.
[19]. Purkait, K., Basu, D., & Das, N. R. (2018a). An Approach to a Narrow Beam Antenna for Microwave Scanning of Stroke affected Brain Cells. Indian Science Cruiser, 32(3), 43-46.
[20]. Rao, P. S., Santosh, K., & Gregg, E. C. (1980). Computed tomography with microwaves. Radiology, 135(3), 769-770. 7384471
[21]. Ruvio, G., Cuccaro, A., Solimene, R., Brancaccio, A., Basile, B., & Ammann, M. J. (2016). Microwave bone imaging: a preliminary scanning system for proof-ofconcept. Healthcare Technology Letters, 3(3), 218-221.
[22]. Sabouni, A., Ostadrahimi, M., Noghanian, S., & Pavlovic, M. (2011, July). Three-dimensional accurate modeling of the microwave tomography imaging system. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2557-2560). IEEE. Spokane, Wash, USA, July 2011.
[23]. Semenov, S. Y., Svenson, R. H., Boulyshev, A. E., Souvorov, A. E., Borisov, V. Y., Sizov, Y., Starostin, A. N., Dezern, K. R., Tatsis, G. P., & Baranov, V. Y. (1996). Microwave Tomography: Two-Dimensional System for Biomedical Imaging. IEEE Trans. Biomed. Eng., 43(9), 869- 877.
[24]. Zakaria, A., & LoVetri, J. (2010, July). A study of adaptive meshing in FEM-CSI for microwave tomography. In 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference (pp. 1-4). IEEE.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.