Realization of a Narrow Beamwidth Scanning Technique of a Biological Target in Microwave Tomography

Deborsi Basu*, Kabita Purkait**
*, **Department of Electronics and Communication Engineering, Kalyani Government Engineering College, West Bengal, India.
Periodicity:June - August'2019

Abstract

In this paper a realization of a narrow beamwidth scanning approach of a semi-human sized biological target has been done. This approach will be very much helpful for different scanning and image reconstruction techniques used in Microwave Tomography Technique (MTT). Sometimes the difficulty in scanning arises due to the presence of cancerous tumors or affected cells inside the inner regions of human body organ. Identification of the actual region becomes tough using ray analysis techniques. Wide beamwidth scanning makes things more complex. Hence, selection of diagnosis techniques and medicines become difficult. Here, a narrow beamwidth scanning approach has been implemented using a simulation model that can provide a solution to the wide beamwidth scanning problems. A suitable biological human body model has been considered and placed inside a nearfield position in between the transmitter and the receiver. Based on the scanning orientations the data are collected at the receiver end and analyzed to identify the actual positions of the affected cells inside the model. The output generates satisfactory and accurate results. So, based on this analysis this can be claimed that using the proposed technique in MTT, more accurate diseased cell identification can be done.

Keywords

Narrow Beamwidth Scanning, Microwave Tomography Technique (MTT), Image Reconstruction Technique, Ray analysis

How to Cite this Article?

Basu, D., & Purkait, K. (2019). Realization of a Narrow Beamwidth Scanning Technique of a Biological Target in Microwave Tomography. i-manager's Journal on Electronics Engineering, 9(4), 12-18.

References

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.