References
[1]. Agrawal, D. (2010). Latest global developments in
microwave materials processing. Materials Research
Innovations, 14(1), 3-8. https://doi.org/10.1179/143307510
X12599329342926
[2]. Bajpai, P. K., Singh, I., & Madaan, J. (2012). Joining of
natural fiber reinforced composites using microwave
energy: Experimental and finite element study. Materials &
Design, 35, 596-602. https://doi.org/10.1016/j.matdes.
2011.10.007
[3]. Bao, R., Yi, J., Peng, Y., & Zhang, H. (2004). Joining of WNi
by microwave processing and soaking time on
microstructure of WC - 8Co. Transactions of Nonferrous
Metals Society of China, 23, 372–376.
[4]. Benedetto, A., & Calvi, A. (2013). A pilot study on
microwave heating for production and recycling of road
pavement materials. Construction and Building Materials,
44, 351-359. https://doi.org/10.1016/j.conbuildmat.2013.
02.082
[5]. Bian, H. M., Yang, Y., Wang, Y., Tian, W., Jiang, H. F., Hu,
Z. J., & Yu, W. M. (2012). Alumina–titania ceramics
prepared by microwave sintering and conventional
pressure-less sintering. Journal of Alloys and Compounds,
525, 63-67. https://doi.org/10.1016/j.jallcom.2012.02.071
[6]. Bruce, R. W., Fliflet, A. W., Huey, H. E., Stephenson, C., &
Imam, M. A. (2010). Microwave sintering and melting of
titanium powder for low-cost processing. In Key Engineering
Materials, 436, 131-140. Trans Tech Publications Ltd. https://
doi.org/10.4028/www.scientific.net/KEM.436. 131
[7]. Gaviná Whittaker, A., & Michael P áMingos, D. (1995).
Microwave-assisted solid-state reactions involving metal
powders. Journal of the Chemical Society, Dalton
Transactions, 12, 2073-2079.
[8]. Giberson, R. T., & Sanders, M. (2009). The real benefits
of microwave-assisted processing go beyond time
savings. Microscopy and Microanalysis, 15(S2), 926-927.
https://doi.org/10.1017/S1431927609092253
[9]. Gupta, D., & Sharma, A. K. (2011). Investigation on sliding
wear performance of WC10Co2Ni cladding developed
through microwave irradiation. Wear, 271(9-10), 1642-1650.
https://doi.org/10.1016/j.wear.2010.12.037
[10]. Gupta, D., & Sharma, A. K. (2012). Microstructural
characterization of cermet cladding developed through
microwave irradiation. Journal of Materials Engineering
and Performance, 21(10), 2165-2172. https://doi.org/10.
1007/s11665-012-0142-2
[11]. Gupta, D., Sharma, A. K. (2005). Joining of different
metal (Al, Mg) through Microwave Hybrid Heating, In
Supplemental Proceedings of Minerals, Metals and
Materials Society (pp. 263-270). Hoboken, NJ, USA. John
Wiley & Sons.
[12]. Keyson, D., Volanti, D. P., Cavalcante, L. S., Simoes, A.
Z., Souza, I. A., Vasconcelos, J. S., ... & Longo, E. (2007).
Domestic microwave oven adapted for fast heat
treatment of Ba0. 5Sr0. 5 (Ti0. 8Sn0. 2) O3 powders. Journal
of Materials Processing Technology, 189(1-3), 316-319.
https://doi.org/10.1016/j.jmatprotec.2007.02.001
[13]. Ku, H. S., Siores, E., & Ball, J. A. R. (2001).
Review—microwave processing of materials: Part I. The
Honking Institution of Engineers Transactions, 8, 31–37.
[14]. Lauf, R. J., Bible, D. W., Johnson, A. C., & Everleigh, C.
A. (1993). Two to 18 GHz broadband microwave heating
systems. Microwave Journal, 36(11), 24-30.
[15]. Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández,
Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010).
Microwave heating processes involving carbon materials.
Fuel Processing Technology, 91(1), 1-8. https://doi.org/10.
1016/j.fuproc.2009.08.021
[16]. Mishra, R. R., & Sharma, A. K. (2016). A review of
research trends in microwave processing of metal-based
materials and opportunities in microwave metal casting.
Critical Reviews in Solid State and Materials Sciences,
41(3), 217-255. https://doi.org/10.1080/10408436.2016.
1142421
[17]. Mondal, A., Agrawal, D., & Upadhyaya, A. (2008).
Microwave heating of pure copper powder with different
particle size and porosity. In Global congress on
microwave energy application, Japan (pp. 517-520).
[18]. Padmavathi, C., Joshi, G., Upadhyaya, A., &
Agrawal, D. (2008). Effect of sintering temperature, heating
mode and graphite addition on the corrosion response of
austenitic and ferritic stainless steels. Transactions of the
Indian Institute of Metals, 61(2-3), 239-243. https://doi.org/
10.1007/s12666-008-0022-5
[19]. Padmavathi, C., Upadhyaya, A., & Agrawal, D.
(2007). Corrosion behavior of microwave-sintered
austenitic stainless steel composites. Scripta Materialia,
57(7), 651-654. https://doi.org/10.1016/j.scriptamat.2007.
06.007
[20]. Sharma, A. K., & Gupta, D. (2012). On microstructure
and flexural strength of metal–ceramic composite
cladding developed through microwave heating. Applied
Surface Science, 258(15), 5583-5592. https://doi.org/10.
1016/j.apsusc.2012.02.019
[21]. Singh, S., Gupta, D., Jain, V., & Sharma, A. K. (2015).
Microwave processing of materials and applications in
manufacturing industries: A review. Materials and
Manufacturing Processes, 30(1), 1-29. https://doi.org/10.
1080/10426914.2014.952028
[22]. Spencer, P. L. (1950). Method of Treating Foodstuffs.
Patent No. US2495429A. Washington, DC: U.S. Patent and
Trademark Office.
[23]. Srinath, M. S., Sharma, A. K., & Kumar, P. (2011). A new
approach to joining of bulk copper using microwave
energy. Materials & Design, 32(5), 2685-2694. https://doi.
org/10.1016/j.matdes.2011.01.023
[24]. Thostenson, E. T., & Chou, T. W. (1999). Microwave
processing: fundamentals and applications. Composites
Part A: Applied Science and Manufacturing, 30(9), 1055-
1071. https://doi.org/10.1016/S1359-835X(99)00020-2
[25]. Zafar, S., & Sharma, A. K. (2014). Development and
characterisations of WC–12Co microwave clad. Materials
Characterization, 96, 241-248. https://doi.org/10.1016/j.
matchar.2014.08.015
[26]. Zhou, J., Shi, C., Mei, B., Yuan, R., & Fu, Z. (2003).
Research on the technology and the mechanical
properties of the microwave processing of polymer.
Journal of Materials Processing Technology, 137(1-3), 156-
158. https://doi.org/10.1016/S0924-0136(02)01082-8