References
[1]. Anshu, Mohan, S. S., & Vikas, S. (2017). Modeling of capacity enhancement of heterogeneous few mode multi-core fiber. International Science Community Association Research Journal on Engineering Sciences, 6(7), 30-34. Retrieved from http://www.isca.in/IJES/ Archive/v6/i7/6.ISCA-RJEngS-2017-112.php
[2]. Arora, P., & Joshi, M. (2015). Comparative study of HPCF structure on dispersion and confinement loss at different pitch of air holes. International Journal of Engineering and Technical Research (IJETR), 3(12), 138- 143.
[3]. Joshi, A., Shrivastava, S.M., Sahu, V., & Anshu. (2017). Modeling of hexagonal and octagonal photonic crystal fiber. i-manager's Journal on Electronics Engineering, 7(4), 34-40. https://doi.org/10.26634/jele.7.4.13687
[4]. Joshi,A., Shrivastava, S.M., Sahu, V., Sanghvi, A.S., Bhadra, A., Anshu, & Tirkey, N. (2016). Modeling of polarization filter based on photonic crystal fiber using surface plasmon resonance : A review. i-manager's Journal on Electronics Engineering, 7(1), 31-36. https://doi.org/10.26634/jele.7.1.8282
[5]. Koshiba, M., Saitoh, K., & Kokubun, Y. (2009). Heterogeneous multi-core fibers: Proposal and design principle. IEICE Electronics Express, 6(2), 98-103. Retrieved from https://pdfs.semanticscholar.org/c4d1/097924e2a 3f8db0f053b03ae00a384dd439f.pdf
[6]. Matsuo, S., Takenaga, K., Sasaki, Y., Amma, Y., Saito, S., Saitoh, K., ... & Miyamoto, Y. (2015). High-spatial-multiplicity multicore fibers for future dense space-division- multiplexing systems. Journal of Lightwave Technology, 34(6), 1464-1475. https://doi.org/10.1109/ JLT.2015.2508928
[7]. Panda, S. G., Sahu, V., & Joshi, A. (2018a). Analysis of selectively filled Ethanol holes in octagonal ring of photonic crystal fiber. i-manager's Journal on Electronics Engineering, 8(4), 34-40. https://doi.org/10.26634/ jele.8.4.14783
[8]. Panda, S.G., Sahu, V., & Joshi, A. (2018b). Comparative analysis of confinement loss and dispersion for hexagonal photonic crystal fiber structure doped with specific liquids. i-manager's Journal on Wireless Communication Networks, 6(4), 10-16. https://doi.org/ 10.26634/jwcn.6.4.14233
[9]. Razzak, S. A., Khan, M. A. G., Begum, F., & Kaijage, S. (2007). Guiding properties of a decagonal photonic crystal fiber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOE), 6(1), 44-49. Retrieved from http://jmoe.org/index.php/jmoe/ article/viewFile/160/151
[10]. Saitoh, K., & Matsuo, S. (2013). Multicore fibers for large capacity transmission. Nanophotonics, 2(5-6), 441- 454. https://doi.org/10.1515/nanoph-2013-0037
[11]. Saitoh, K., & Matsuo, S. (2016). Multicore fiber technology. Journal of Lightwave Technology, 34(1), 55- 66. Retrieved from https://ieeexplore.ieee.org/ document/7121748
[12]. Sakaguchi, J., Klaus, W., Mendinueta, J. M. D., Puttnam, B. J., Luís, R. S., Awaji, Y., ... & Kokubun, Y. (2015). Large spatial channel (36-core× 3 mode) heterogeneous few-mode multicore fiber. Journal of Lightwave Technology, 34(1), 93-103. https://doi.org/10.1109/JLT. 2015.2481086
[13]. Sasaki, Y., Amma, Y., Takenaga, K., Matsuo, S., Saitoh, K., & Koshiba, M. (2015). Few-mode multicore fibre with 36 spatial modes (Three modes (LP01, LP11a, LP11b) ×12 cores). In 2014 the European Conference on Optical Communication (ECOC) (pp. 1-3). https://doi. org/10.1109/ECOC.2014.6964212
[14]. Tirkey, N., Sahu, V., Shrivastava, S. M., & Joshi, A. (2016). Simulation of spatial multiplicity enhancement for dense space division multiplexing: A review. i-manager's Journal on Communication Engineering and Systems, 6(1), 42-48. https://doi.org/10.26634/jcs.6.1.10356