References
[1]. Arica, N., & Yarman-Vural, F. T. (2001). An overview of character recognition focused on off-line handwriting. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(2), 216-233. https://doi.org/10.1109/5326.941845
[2]. Baumann, S., Ali, M. B. H., Dengel, A., Jager, T., Malburg, M., Weigel, A., & Wenzel, C. (1997, August). Message extraction from printed documents-a complete solution. In Proceedings of the Fourth International Conference on Document Analysis and Recognition. Vol(2), 1055-1059. IEEE. https://doi.org/10.1109/ ICDAR.1997.620670
[3]. Casey, R. G., & Lecolinet, E. (1996). A survey of methods and strategies in character segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 690-706 https://doi.org/10.1109/ 34.506792
[4]. Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-and- pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10),1479. https://doi.org/10.1109/ TIP.2005.852196
[5]. Chaudhuri, B. B., Pal, U., & Mitra, M. (2002). Automatic recognition of printed Oriya script. Sadhana, 27(1), 23-34 https://doi.org/10.1007/BF02703310
[6]. Chou, K. S., Fan, K. C., & Fan, T. I. (1997). Peripheral and global features for use in coarse classification of Chinese characters. Pattern Recognition, 30(3), 483-489. https://doi.org/10.1016/S0031-3203(96)00090-8
[7]. Das, N., Sarkar, R., Basu, S., Saha, P. K., Kundu, M., & Nasipuri, M. (2015). Handwritten Bangla character recognition using a soft computing paradigm embedded in two pass approach. Pattern Recognition, 48 (6), 2054 - 2071. https://doi.org/10.1016/j.patcog.2014.12.011
[8]. Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern Classification (Vol. 2). John Wiley & Sons.
[9]. Fan, K. C., Wang, L. S., & Tu, Y. T. (1998). Classification of machine-printed and handwritten texts using character block layout variance. Pattern Recognition, 31(9), 1275-1284. https://doi.org/10.1016/S0031- 3203(97)00143-X
[10]. Fujisawa, H. (2008). Forty years of research in character and document recognition - an industrial perspective. Pattern Recognition, 41(8), 2435-2446. https://doi.org/10.1016/j.patcog.2008.03.015
[11]. Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern Recognition, 39 (3), 317-327. https://doi.org/10.1016/j.patcog.2005.09.010
[12]. Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing. Publishing House of Electronics Industry, 141(7).
[13]. Haralick, R. M., & Shapiro, L. G. (1992). Computer and Robot Vision (Vol.1, pp.28-48) Reading: Addisonwesley.
[14]. Hu, J., Yu, D., & Yan, H. (1998, August). Structural boundary feature extraction for printed character recognition. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) (pp. 500 - 507). Springer, Berlin, Heidelberg. https://doi.org/10.1007/ BFb0033272
[15]. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32 (3), 241-254. https://doi.org/10.1007/BF02289588
[16]. Jung, K., Kim, K. I., & Jain, A. K. (2004). Text information extraction in images and video: A survey. Pattern Recognition, 37(5), 977-997. https://doi.org/ 10.1016/j.patcog.2003.10.012
[17]. Kumar, D. U. (2009). Traditional writing system in southern India - palm leaf manuscripts. Design Thoughts, 7, 2-7.
[18]. Kumar, M., Sharma, R. K., & Jindal, M. K. (2014). Efficient feature extraction techniques for offline handwritten Gurumukhi character recognition. National Academy Science Letters, 37 (4), 381-391. https://doi.org/10.1007/s40009-014-0253-4
[19]. Lam, L., Lee, S. W., & Suen, C. Y. (1992). Thinning methodologies-a comprehensive sur vey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (9), 869 - 885. https://doi.org/10.1109/34.161346
[20]. Lehal, G. S., & Singh, C. (1999). Feature extraction and classification for OCR of Gurmukhi script. Vivek- Bombay, 12(2), 2-12.
[21]. Liu, C. L. (2006, September). Handwritten chinese character recognition: Effects of shape normalization and feature extraction. In Summit on Arabic and Chinese Handwriting Recognition (pp. 104-128). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78199- 8_7
[22]. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, No. 14, pp. 281-297).
[23]. Mezghani, N., Mitiche, A., & Cheriet, M. (2008). Bayes classification of online arabic characters by Gibbs modeling of class conditional densities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7), 1121-1131. https://doi.org/10.1109/TPAMI.2007.70753
[24]. Mizukami, Y. (1998). A handwritten chinese character recognition system using hierarchical displacement extraction based on directional features. Pattern Recognition Letters, 19 (7), 595-604. https://doi.org/10.1016/S0167-8655(98)00034-8
[25]. Mori, S., Suen, C. Y., & Yamamoto, K. (1992). Historical review of OCR research and development. Proceedings of the IEEE, 80 (7), 1029 - 1058. https://doi.org/10.1109/5.156468
[26]. Nixon, M. S., & Aguado, A. S.(2008). Feature Extraction and Image Processing (2nd Ed).Academic Press,ISBN 978-0-12-372538-7, (2 ed.). Elsevier Ltd., London, UK.
[27]. Pal, U., & Chaudhuri, B. B. (2004). Indian script character recognition: A survey. Pattern Recognition, 37 (9), 1887 - 1899. https://doi.org/10.1016/j.patcog.2004.02.003
[28]. Plamondon, R., & Srihari, S. N. (2000). Online and offline handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. https://doi.org/10.1109/ 34.824821
[29]. Rocha, J., & Pavlidis, T. (1995). Character recognition without segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 903- 909. https://doi.org/10.1109/34.406657
[30]. Russ, J. C. (2007). The Image Processing Handbook, CRC. Boca Raton, FL.
[31]. Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. https://doi.org/10.1016/S0031-3203(99)00055-2
[32]. Saxena, L. P. (2014). An effective binarization method for readability improvement of stain-affected (degraded) palm leaf and other types of manuscripts. Current Science, 489-496.
[33]. Serra, J. (1982). Image Analysis and Mathematical Morphology, (Vol.1).
[34]. Shelke, S., & Apte, S. (2015, January). A fuzzy based classification scheme for unconstrained handwritten Devanagari character recognition. In 2015 International Conference On Communication, Information & Computing Technology (ICCICT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCICT.2015.7045738
[35]. Sonka, M., Hlavac, V., & Boyle, R. (2007). Image Processing, Analysis, and Machine Vision. Thomson- Engineering.
[36]. Srinivasan, S., Joseph, J. V. M., & Harikumar, P. (2012). Indus script deciphered: the method of semblance at work. Current Science, 268-281.
[37]. Vamvakas, G., Gatos, B., & Perantoni, S. J. (2009, July). A novel feature extraction and classification Methodology for the recognition of historical documents. In Proceedings of the 2009 10th International Conference on Document Analysis and Recognition (pp. 491-495). IEEE Computer Society. https://doi.ieeecomputer society.org/10.1109/ICDAR.2009.223
[38]. Vamvakas, G., Gatos, B., Petridis, S., & Stamatopoulos, N. (2007, September). An efficient feature extraction and dimensionality reduction scheme for isolated greek handwritten character recognition. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (Vol. 2, pp. 1073-1077). IEEE. https://doi.org/10.1109/ICDAR.2007.4377080
[39]. Van Rijsbergen, C. J. (1979). Information Retrieval nd (2 Ed.). Newton, MA.
[40]. Venugopalan, K. (1983). A Primer in Grantha Characters (2nd Ed). St. Peter, Minn: James H. Nye.
[41]. Wakahara, T., & Yamashita, Y. (2012, September). k- NN Classification of handwritten characters via accelerated GAT correlation. In 2012 International Conference on Frontiers in Handwriting Recognition (ICFHR 2012) (pp. 143-148). IEEE. https://doi.org/ 10.1016/j.patcog.2013.05.005
[42]. Wang, K., & Kangas, J. A. (2003). Character location in scene images from digital camera. Pattern Recognition, 36(10), 2287-2299. https://doi.org/ 10.1016/S0031-3203(03)00082-7
[43]. Wen, M. G., Fan, K. C., & Han, C. C. (2004). Classification of chinese characters using pseudo skeleton features. J. Inf. Sci. Eng., 20(5), 903-922.
[44]. Yin, F., Wang, Q. F., & Liu, C. L. (2013). Transcript mapping for handwritten chinese documents by integrating character recognition model and geometric context. Pattern Recognition, 46(10), 2807-2818. https://doi.org/10.1016/j.patcog.2013.03.013