References
[1]. Alqaralleh, G., Alshraideh, A., & Alrodan, A. (2018, August). A comparison study between different sampling strategies for intrusion detection system of active learning model. Journal of Computer Science, 14(8), 1155-1173.
[2]. Barreno, M., Nelson, B., Sears, R., Joseph, A. D., & Tygar, J. D. (2006, March). Can machine learning be secure?. In Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security (pp. 16-25). ACM.
[3]. Barreno, M., Nelson, B., Joseph, A. D., & Tygar, J. D. (2010). The security of machine learning. Machine Learning, 81(2), 121-148.
[4]. Bloodgood, M. (2018, January). Support vector machine active learning algorithms with query-bycommittee versus closest-to-hyperplane selection. In 2018 IEEE 12th International Conference on Semantic Computing (ICSC) (pp. 148-155). IEEE.
[5]. Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning. Machine Learning, 15(2), 201-221. Doi: 10.1007/BF00993277.
[6]. Gilad-Bachrach, R., Navot, A., & Tishby, N. (2006). Query by committee made real. In Advances in Neural Information Processing Systems (pp. 443-450).
[7]. Iglesias, J. E., Konukoglu, E., Montillo, A., Tu, Z., & Criminisi, A. (2011, July). Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In Biennial International Conference on Information Processing in Medical Imaging (pp. 25-36). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-22092-0_3.
[8]. Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009, June). Multi-class active learning for image classification. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 2372-2379). IEEE. DOI: 10.1109/CVPR. 2009.5206627.
[9]. Laskov, P., & Lippmann, R. (2010). Machine learning in adversarial environments. Machine Learning, 81(2), 115- 119.
[10]. Lewis, D. D., & Gale, W. A. (1994, August). A sequential algorithm for training text classifiers. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3-12). Springer-Verlag New York, Inc.
[11]. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431-3440). doi: 10.1109/CVPR.2015.7298965.
[12]. Mamitsuka, N. A. H. (1998, July). Query learning strategies using boosting and bagging. In Machine Learning: Proceedings of the Fifteenth International Conference (ICML'98) (Vol. 1). Morgan Kaufmann Pub.
[13]. Miller, B., Kantchelian, A., Afroz, S., Bachwani, R., Dauber, E., Huang, L., & Tygar J. D. (2014, November). Adversarial active learning. In Proceedings of the 2014 Workshop on Artificial Intelligence and Security Workshop (pp.3-14). ACM.
[14]. O'Neill, J., Delany, S. J., & MacNamee, B. (2016). Model-Based and Model-Free Active Learning for Regression.
[15]. Roy, N., & McCallum, A. (2001). Toward optimal active learning through sampling estimation of error reduction. Proceedings of the 18th International Conference on Machine Learning, (pp. 441-448).
[16]. Settles, B. (2009). Active Learning Literature Survey, Computer Sciences. Tech. Rep. 1648. University of Wisconsin-Madison, Madison, Wis, USA.
[17]. Settles, B., Craven, M., & Ray, S. (2008). Multipleinstance active learning. In Advances in Neural Information Processing Systems (pp. 1289-1296).
[18]. Seung, H. S., Opper, M., & Sompolinsky, H. (1992, July). Query by committee. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory (pp. 287-294). ACM.
[19]. Sznitman, R., & Jedynak, B. (2010). Active testing for face detection and localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(10), 1914- 1920. doi: 10.1109/TPAMI.2010.106.
[20]. Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2(Nov), 45-66.
[21]. Vezhnevets, A., Ferrari, V., & Buhmann, J. M. (2012, June). Weakly supervised structured output learning for semantic segmentation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 845-852). IEEE.
[22]. Yang, Y., Ma, Z., Nie, F., Chang, X., & Hauptmann, A. G. (2015). Multi-class active learning by uncertainty sampling with diversity maximization. International Journal of Computer Vision, 113(2), 113-127. doi: 10.1007/ s11263-014-0781-x
[23]. Zhao, W., Long, J., Yin, J., Cai, Z., & Xia, G. (2012, November). Sampling attack against active learning in adversarial environment. In International Conference on Modeling Decisions for Artificial Intelligence (pp. 222-233). Springer, Berlin, Heidelberg.