References
[1]. Aliakbari, E., & Baseri, H. (2012). Optimization of machining parameters in rotary EDM process by using the Taguchi method. The International Journal of Advanced Manufacturing Technology, 62(9-12), 1041-1053. https://doi.org/10.1007/s00170-011-3862-9
[2]. Dhanabalan, S., Sivakumar, K., & Narayanan, S. C. (2012). Optimization of EDM process parameters with multiple performance characteristics for titanium grades. European Journal of Scientific Research, 68(3), 297-305.
[3]. Gopalakannan, S., Senthilvelan, T., & Ranganathan, S. (2012). Modeling and optimization of EDM process parameters on machining of Al 7075-B4C MMC using RSM. Procedia Engineering, 38, 685-690. https://doi.org/ 10.1016/j.proeng.2012.06.086
[4]. Kodlinge, P. G., & Khire, M. (2012). Some studies on machinability of tungsten carbide during EDM operations. International Journal of Engineering Science and Technology, 3(1).
[5]. Kumar, A., & Maheshwari, S. (2015). Optimization of Submerged Arc Welding Rutile Based Flux constituents by Hybrid Grey, Fuzzy and Taguchi Analysis. Advanced Materials Manufacturing & Characterization, 5(2), 63-70.
[6]. Rao, P. S., Ramji, K., & Satyanarayana, B. (2014). Experimental investigation and optimization of wire EDM parameters for surface roughness, MRR and white layer in machining of aluminium alloy. Procedia Materials Science, 5, 2197-2206. https://doi.org/10.1016/j.mspro. 2014.07.426
[7]. Sivaiah, P., & Bodicherla, U. (2019). Effect of Surface Texture Tools and Minimum Quantity Lubrication (MQL) on tool Wear and Surface Roughness in CNC Turning of AISI 52100 Steel. Journal of The Institution of Engineers (India): Series C, 1–11. https://doi.org/10.1007/s40032-019-00512- 2
[8]. Sivaiah, P., & Chakradhar, D. (2017). Multi-objective optimisation of cryogenic turning process using Taguchibased grey relational analysis. International Journal of Machining and Machinability of Materials, 19(4), 297-312. https://doi.org/10.1504/IJMMM.2017.086161
[9]. Sivaiah, P., & Chakradhar, D. (2018a). Analysis and modeling of cryogenic turning operation using response surface methodology. Silicon, 10(6), 2751–2768. https://doi.org/10.1007/s12633-018-9816-1
[10]. Sivaiah, P., & Chakradhar, D. (2018b). Multi performance characteristics optimization in cryogenic turning of 17-4 PH stainless steel using Taguchi coupled grey relational analysis. Advances in Materials and Processing Technologies, 4(3), 431-447. https://doi.org/10. 1080/2374068X.2018.1452132
[11]. Sivaiah, P., & Chakradhar, D. (2019a). Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement, 134, 142-152. https://doi.org/10.1016/j.measurement. 2018.10.067
[12]. Sivaiah, P., & Chakradhar, D. (2019b). The effectiveness of a novel cryogenic cooling approach on turning performance characteristics during machining of 17-4 PH stainless steel material. Silicon, 11(1), 25-38. https://doi.org/ 10.1007/s12633-018-9875-3
[13]. Sivaiah, P., & Chakradhar, D. (2019c). Performance improvement of cryogenic turning process during machining of 17-4 PH stainless steel using multi objective optimization techniques. Measurement, 136, 326-336. https://doi.org/10.1016/j.measurement.2018.12.094
[14]. Sivaiah, P., Mallikarjuna, P., Uma, B., & Chalapathi, K. V. (2018). Optimization of Environmental Friendly Turning Process Using Taguchi Integrated Grey Relational Analysis During Machining of 17-4 PH Stainless Steel. i-Manager's Journal on Mechanical Engineering, 8(4), 8-17. https://doi.org/10.26634/jme.8.4.14190