References
[1]. Anjaneya, K. C., & Singh, M. P. (2017). Synthesis and properties of gadolinium doped ceria electrolyte for ITSOFCs by EDTA-citrate complexing method. Journal of Alloys and Compounds, 695, 871-876. https://doi.org/ 10.1016/j.jallcom.2016.10.175
[2]. Azad, S., Marina, O. A., Wang, C. M., Saraf, L., Shutthanandan, V., McCready, D. E., ... & Thevuthasan, S. (2005). Nanoscale effects on ion conductance of layerby- layer structures of gadolinia-doped ceria and zirconia. Applied Physics Letters, 86(13), 131906. https://doi.org/ 10.1063/1.1894615
[3]. Badwal, S. P. S., Fini, D., Ciacchi, F. T., Munnings, C., Kimpton, J. A., & Drennan, J. (2013). Structural and microstructural stability of ceria–gadolinia electrolyte exposed to reducing environments of high temperature fuel cells. Journal of Materials Chemistry A, 1(36), 10768- 10782. https://doi.org/10.1039/C3TA11752A
[4]. Fu, C. J., Liu, Q. L., Chan, S. H., Ge, X. M., & Pasciak, G. (2010). Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC. International Journal of Hydrogen Energy, 35(20), 11200- 11207. https://doi.org/10.1016/j.ijhydene.2010.07.049
[5]. Gong, Y., Ji, W., Zhang, L., Li, M., Xie, B., Wang, H., ... & Song, Y. (2011). Low temperature deposited (Ce, Gd) O2−x interlayer for La Sr Co0.6Fe0.4O0.2Fe0.8O3 cathode based solid oxide fuel cell. Journal of Power Sources, 196(5), 2768- 2772. https://doi.org/10.1016/j.ssi.2007.12.008
[6]. Grover, V., Shukla, R., Kumari, R., Mandal, B. P., Kulriya, P. K., Srivastava, S. K., ... & Avasthi, D. K. (2014). Effect of grain size and microstructure on radiation stability of CeO2 : An extensive study. Physical Chemistry Chemical Physics, 16(48), 27065-27073. https://doi.org/10.1039/ C4CP04215H
[7]. Heavens, O. S. (1965). Optical Properties of Thin Solid Films. New York: Dover Publications.
[8]. Jamale, A. P., Bhosale, C. H., & Jadhav, L. D. (2015). Electrochemical behavior of LSCF/GDC interface in symmetric cell: An application in solid oxide fuel cells. Journal of Alloys and Compounds, 623, 136-139. https://doi.org/10.1016/j.jallcom.2014.10.122
[9]. Jordan, N., Assenmacher, W., Uhlenbruck, S., Haanappel, V. A. C., Buchkremer, H. P., Stöver, D., & Mader, W. (2008). Ce0.8Gd0.2O2-δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics, 179(21-26), 919-923.
[10]. Ko, H. J., Myung, J. H., Lee, J. H., Hyun, S. H., & Chung, J. S. (2012). Synthesis and evaluation of (La0.6Sr0.4)(Co0.2Fe0.8)O3 (LSCF)-Y0.08 Zr0.92O1.96 (YSZ)-Gd0.1Ce0.9O2-δ- (GDC) dual composite SOFC cathodes for high performance and durability. International Journal of Hydrogen Energy, 37(22), 17209-17216.https://doi.org/ 10.1016/j.ijhydene.2012.08.099
[11]. Komatsu, K., Nakamura, A., Kato, A., Ohshio, S., Akasaka, H., & Saitoh, H. (2011). Investigation of Temperature Dependence on Emission Properties of Sr-Al- O:Eu2+ Phosphor Synthesized using Elemental Diffusion from Substrate. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 10, p. 102017). https://doi.org/10.1088/1757-899X/18/10/102017
[12]. Komatsu, K., Sekiya, T., Toyama, A., Hasebe, Y., Nakamura, A., Noguchi, M., ... & Saitoh, H. (2014). Deposition of metal oxide films from metal–EDTA complexes by flame spray technique. Journal of Thermal Spray Technology, 23(5), 833-838. https://doi.org/10.1007/s11666-014-0104-3
[13]. Li, Z. P., Mori, T., Auchterlonie, G. J., Zou, J., & Drennan, J. (2011). Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs. Journal of Solid State Chemistry, 184(9), 2458-2461. https://doi.org/10. 1016/j.jssc.2011.07.021
[14]. Lin, J. D., Duh, J. G., & Chiou, B. S. (2001). The influence of washing and calcination condition on urea-derived ceria-yttria-doped tetragonal zirconia powders. Materials Chemistry and Physics, 68(1-3), 42-55. https://doi.org/10.1016/S0254-0584(00)00290-X
[15]. Lin, T. N., Lee, M. C., Yang, R. J., Chang, J. C., Kao, W. X., & Lee, L. S. (2012). Chemical state identification of Ce3+ /Ce4+ in the Sm0.2 Ce0.8O2−δ electrolyte for an anode-supported solid oxide fuel cell after long-term operation, Materials Letters, 81, 185-188. https://doi.org/10.1016/j. matlet.2012.04.122
[16]. Mullins, D. R., Overbury, S. H., & Huntley, D. R. (1998). Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surface Science, 409(2), 307-319. https://doi.org/10.1016/S0039-6028(98)00257-X
[17]. Oh, E. O., Whang, C. M., Lee, Y. R., Park, S. Y., Prasad, D. H., Yoon, K. J., ... & Lee, H. W. (2014). Fabrication of thinfilm gadolinia-doped ceria (GDC) interdiffusion barrier layers for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by Chemical Solution Deposition (CSD). Ceramics International, 40(6), 8135-8142. https://doi.org/ 10.1016/j.ceramint.2014.01.008
[18]. Orliukas, A. F., Šalkus, T., Kežionis, A., Venckutė, V., Kazlauskienė, V., Miškinis, J., ... & Dudonis, J. (2011). XPS and impedance spectroscopy of some oxygen vacancy conducting solid electrolyte ceramics. Solid State Ionics, 188(1), 36-40. https://doi.org/10.1016/j.ssi.2010.11.001
[19]. Plonczak, P., Joost, M., Hjelm, J., Søgaard, M., Lundberg, M., & Hendriksen, P. V. (2011). A high performance ceria based interdiffusion barrier layer prepared by spin-coating. Journal of Power Sources, 196(3), 1156-1162. https://doi.org/10.1016/j.jpowsour. 2010.08.108
[20]. Saitoh, H., Kawahara, K. I., Ohshio, S., Nakamura, A., & Nambu, N. (2005). Metal composition of Y O : Eu 2 3 powder evaluated using particle analyzer. Science and Technology of Advanced Materials, 6(2), 205-209. https://doi.org/10.1016/j.stam.2004.11.015
[21]. Schlupp, M. V. F., Kurlov, A., Hwang, J., Yáng, Z., Döbeli, M., Martynczuk, J., ... & Gauckler, L. J. (2013). Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells. Fuel Cells, 13(5), 658-665. https://doi.org/10.1002/fuce. 201300029
[22]. Taylor, D. J., Fleig, P. F., & Hietala, S. L. (1998). Technique for characterization of thin film porosity. Thin Solid Films, 332(1-2), 257-261. https://doi.org/10.1016/ S0040-6090(98)01264-4
[23]. Xin, D. Y., Komatsu, K., Abe, K., Costa, T., Ikeda, Y., Nakamura, A., ... & Saitoh, H. (2017). Heat-shock properties in yttrium-oxide films synthesized from metal–ethylenediamine tetraacetic acid complex through flame-spray apparatus. Applied Physics A, 123(3), 194. https://doi.org/10.1007/s00339-017-0839-z
[24]. Zarkov, A., Stanulis, A., Mikoliunaite, L., Katelnikovas, A., Jasulaitiene, V., Ramanauskas, R., ... & Kareiva, A. (2017). Chemical solution deposition of pure and Gd-doped ceria thin films: Structural, morphological and optical properties. Ceramics International, 43(5), 4280- 4287. https://doi.org/10.1016/j.ceramint.2016.12.070
[25]. Zhang, F., Wang, P., Koberstein, J., Khalid, S., & Chan, S. W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science, 563(1-3), 74-82. https://doi.org/10. 1016/j.susc.2004.05.138