Detection and Analysis of Rotor Bearing Fault in a Three Phase Induction Motor using MCSA and ANSYS® Maxwell 2D

K.C.Sindhu Thampatty*, Vishak Nathan**, Aravind Rajiv***
*Department of Electrical and Electronics Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India.
** Sioux Logena B.V, Eindhoven, Netherlands.
*** Building Services Industry, Dubai, United Arab Emirates.
Periodicity:July - September'2019


Being an integral part of any engineering system, electrical machines are used in all industries. Among all these machines, very common type of machine is induction motors. Motor faults can lead to untimely shutdown of machines and consequently lead to loss of productivity. This can be avoided by the proper detection of fault in the incipient stage itself which requires a detailed analysis of the fault and clearly understand its effect on the motor. This paper presents a method to analyses the frequently occurring rotor bearing fault on an induction motor. The fault analysis is conducted using two parameters: Stator current and voltage by Motor Current Signature Analysis and the motor flux distribution using ANSYS® Maxwell 2D.


Induction Motors; Rotor Bearing Fault; Motor Current Signature Analysis (MCSA); ANSYS® Maxwell 2D.

How to Cite this Article?

Thampatty, K., C., S., Nathan, V., & Rajiv, A. (2019). Detection and Analysis of Rotor Bearing Fault in a Three Phase Induction Motor using MCSA and ANSYS ® Maxwell 2D.i-manager’s Journal on Electrical Engineering, 13(1), 19-29.


Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.