References
[1]. Badry, P., & Satyam, N. (2017). Seismic soil structure interaction analysis of piled raft supported asymmetrical buildings. Journal of Asian Earth Sciences,133(1),102- 113. https://doi.org/10.1016/j.jseaes.2016.03.014
[2]. Baghi, H., Oliveira, A., Cavaco, E., Neves, L., & Júlio, E. (2018). Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load. Engineering Structures, 171, 476-487. https://doi.org/10.1016/ j.engstruct.2018.06.001
[3]. Bureau of Indian Standards. (1987). Code of practice for design loads (other than earthquake) for buildings and structures. Part I, Dead loads (second revision), IS-875- 1987. New Delhi, India.
[4]. Bureau of Indian Standards. (1987). Code of practice for design loads (other than earthquake) for buildings and structures. Part II, Imposed loads (second revision), IS-875- 1987. New Delhi, India.
[5]. Bureau of Indian Standards. (2016). Criteria for earthquake design of the structure (IS 1893 [PART1]: 2016). New Delhi, India.
[6]. Celebi, E., Göktepe, F., & Karahan, N. (2012). Nonlinear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction. Natural Hazards and Earth System Sciences, 12(11), 3495-3505. https://doi.org/10.5194/nhess-12- 3495-2012
[7]. Choi, H., Sanada, Y., & Nakano, Y. (2017). Diagonal strut mechanism of URM wall infilled RC frame for multi bays. Procedia Engineering, 210, 409-416. https://doi.org/10.1016/j.proeng.2017.11.095
[8]. Cruz, C., & Miranda, E. (2017). Evaluation of soil- structure interaction effects on the damping ratios of buildings subjected to earthquakes. Soil Dynamics and Earthquake Engineering, 100, 183-195. https://doi.org/10.1016/j.soildyn.2017.05.034
[9]. Das, D., & Murty, C. V. R. (2004). Brick Masonry infills in seismic design of RC framed buildings: Part 1-Cost implications. Indian Concrete Journal, 78(7), 39-44.
[10]. Dutta, S. C., Bhattacharya, K., & Roy, R. (2004). Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction. Soil Dynamics and Earthquake Engineering, 24(12), 893-914. https://doi.org/10.1016/j.soildyn.2004.07.001
[11]. Furtado, A., Rodrigues, H., Arêde, A., Varum, H., Grubišić, M., & Šipoš, T. K. (2018). Prediction of the earthquake response of a three-storey infilled RC structure. Engineering Structures, 171, 214-235. https://doi.org/10.1016/j.engstruct.2018.05.054
[12]. Jayalekshmi, B. R., & Chinmayi, H. K. (2014). Effect of soil flexibility on seismic force evaluation of rc framed buildings with shear wall: A comparative study of IS 1893 and EUROCODE8. Journal of Structures, 2014, 15. https://doi.org/10.1155/2014/493745
[13]. Kose, M. M. (2009). Parameters affecting the fundamental period of RC buildings with infill walls. Engineering Structures, 31(1), 93-102. https://doi.org/ 10.1016/j.engstruct.2008.07.017
[14]. Lee, H. H. (2018). Finite Element Simulations with ANSYS Workbench 18. SDC publications.
[15]. Perrone, D., Leone, M., & Aiello, M. A. (2017). Nonlinear behaviour of masonry in filled RC frames: Influence of masonry mechanical properties. Engineering Structures, 150, 875-891. https://doi.org/10.1016/ j.engstruct.2017.08.001
[16]. Pulikanti, S., & Ramancharla, P. K. (2014). SSI analysis of framed structure supported on pile foundations-with and without interface elements. Frontiers in Geotechnical Engineering (FGE), 1(3).
[17]. Ravishankar, P., & Satyam, N. (2013). Finite element modeling to study soil structure interaction of asymmetrical tall building. International Journal of Science and Technology and Engineering, 3(11).
[18]. Sunny, N. A., & Mathai, A. (2017). Soil-structure interaction analysis of multistorey building. International Journal of Science Technology & Engineering, 3(11).
[19]. Vasilev, G., Parvanova, S., Dineva, P., & Wuttke, F. (2015). Soil-structure interaction using BEM–FEM coupling through ANSYS software package. Soil Dynamics and Earthquake Engineering, 70, 104-117. https://doi.org/ 10.1016/j.soildyn.2014.12.007