References
[1]. Auwal, I., Ünal, B., Baykal, A., Kurtan, U., & Yıldız, A. (2017). Electrical and dielectric characterization of Bi–La ion-substituted barium hexaferrites. Journal of Superconductivity and Novel Magnetism, 30(6), 1499- 1514. https://doi.org/10.1007/s10948-016-3945-9
[2]. Azim, M., Atiq, S., Riaz, S., & Naseem, S. (2014). Indexing the structural parameters and investigating the magnetic properties of lanthanum doped strontium hexaferrites. In IOP Conference Series: Materials Science and Engineering (Vol. 60, No. 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1757-899X/60/1/ 012045
[3]. Bhat, B. H., & Want, B. (2016). Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite. Journal of Materials Science: Materials in Electronics, 27(12), 12582-12590. https://doi.org/10.1007/s10854-016-5389- 1
[4]. Dafe, S., & Salunkhe, M. ( 2015). FTIR study of diamagnetic Mg2+ substitute Ni Z hexaferrite. 2 International Journal of Engineering Research & Technology, 4(11), 345-347. http://dx.doi.org/10.17577/ IJERTV4IS110287
[5]. Ghanbari, F., Arab, A., Bor, M. S., & Mardaneh, M. R. (2017). Magnetic properties of La/Ni-Substituted strontium hexaferrite nanoparticles prepared by coprecipitation at Optimal Conditions. Journal of Electronic Materials, 46(4), 2112-2118. https://doi.org/10.1007/s11664-016- 5140-y
[6]. Guo, F., Wu, X., Ji, G., Xu, J., Zou, L., & Gan, S. (2014). Synthesis and properties investigation of non-equivalent substituted W-type hexa ferrite. Journal of Superconductivity and Novel Magnetism, 27(2), 411-420. https://doi.org/10.1007/s10948-013-2276-3
[7]. Kaur, P., Narang, S. B., & Bahel, S. (2017). Investigation of electromagnetic properties of La-doped strontium ferrite in X and Ku bands. Journal of Superconductivity and Novel Magnetism, 30(8), 2239-2245. https://doi.org/ 10.1007/s10948-017-4024-6
[8]. Mahmood, S. H., Awadallah, A. M., Bsoul, I., & Maswadeh, Y. (2017). Structural and magnetic Properties of lightly doped M-type hexaferrites. Retrieved from https://www.researchgate.net/publication/318487702
[9]. Mamatha, C., Krishnaiah, M., Prakash, C. S., Rewatkar, K. G., & Nagabhushana, B. M. (2014). Structural, electrical and magnetic properties of aluminum substituted Nanocalcium Hexaferrites. International Journal of ChemTech Research, 6, 2165-2167. https://doi.org/ 10.1016/j.mspro.2014.07.328
[10]. Najafabadi, A. H., Mozaffarinia, R., & Ghasemi, A. (2015). Microstructural characteristics and magnetic properties of Al-substituted barium hexaferrite nanoparticles synthesized by auto-combustion sol–gel processing. Journal of Superconductivity and Novel Magnetism, 28(9), 2821-2830. https://doi.org/10.1007/ s10948-015-3119-1
[11]. Qiao, L., Zhou, M., Zheng, J., Ying, Y., & Che, S. (2016). Microstructure and coercivity of Sr1-x-x' LaxCax'Fe2n-y CoyOα ferrites. Journal of Materials Science: Materials in Electronics, 27(7), 7183-7191. https://doi.org/10.100 7/s10854-016-4682-3
[12]. Rashad, M. M., El-Sayed, H. M., Rasly, M., Sattar, A. A., & Ibrahim, I. A. (2013). Magnetic and dielectric properties of polycrystalline La doped barium Z-type hexaferrite for hyper-frequency applications. Journal of Materials Science: Materials in Electronics, 24(1), 282- 289. https://doi.org/10.1007/s10854-012-0740-7
[13]. Rehman, K. M. U., Liu, X., Yang, Y., Feng, S., Tang, J., Ali, Z., ... & Zhang, C. (2018). Structural, morphological and magnetic properties of Sr0.3 La0.48Ca0.25 n [Fe(20.4/n)O3]Co0.4 (n=5.5, 5.6, 5.7, 5.8, 5.9, 6.0) hexaferrites prepared by facile ceramic route methodology. Journal of Magnetism and Magnetic Materials, 449, 360-365. https://doi.org/ 10.1016/j.jmmm.2017.10.051
[14]. Rewatkar, K. G., Prakash, G. S., & Kulkarni, G. K. (1996). Synthesis and characterisation of the CaFexAlxX (CuTi)6-x O19 hexaferrite system. Materials Letters, 28(4-6), 6-x 19 365-368. https://doi.org/10.1016/0167-577X(96)00087-0
[15]. Rezlescu, N., Rezlescu, E., Popa, P. D., Doroftei, C., & Ignat, M. (2013). Comparative study between catalyst properties of simple spinel ferrite powders prepared by self-combustion route. Romanian Reports in Physics, 65(4), 1348-1356.
[16]. Roohani, E., Arabi, H., Sarhaddi, R., & Sudkhah, S. (2017). M-type strontium hexaferrite nanoparticles prepared by sol-gel auto-combustion method: The role of Co substitution in structural, morphological, and magnetic properties. Journal of Superconductivity and Novel Magnetism, 30(6), 1599-1608. https://doi.org/10. 1007/s10948-016-3966-4
[17]. Satone, B. S., & Rewatkar K. G. (2015). A comparative study on structural and magnetic properties of La, Cr and Al doped M-type calcium hexagonal nano ferrites prepared by sol gel auto-combustion method. International Journal of Modern Trends in Engineering and Research, 2(8), 180-187.
[18]. Shepherd, P., Mallick, K. K., & Green, R. J. (2007). Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. Journal of Magnetism and Magnetic Materials, 311(2), 683-692. https://doi.org/10.1016/j.jmmm.2006.08.046
[19]. Singh, V. P., Kumar, G., Kumar, A., Rai, R. S., Valente, M. A., Batoo, K. M., ... & Singh, M. (2016). Structural, magnetic and Mössbauer study of BaLa Fe O x 12−x 19 nanohexaferrites synthesized via sol–gel auto-combustion technique. Ceramics International, 42(4), 5011-5017. https://doi.org/10.1016/j.ceramint.2015. 12.014
[20]. Wang, Z., Yang, W., Zhou, Z., Jin, M., Xu, J., & Sui, Y. (2016). Preparation and magnetic properties of Lasubstituted strontium hexaferrite by microwave-assisted Sol-Gel method. Journal of Superconductivity and Novel Magnetism, 29(4), 981-984. https://doi.org/10.1007/ s10948-016-3392-7