References
[1]. Asiabanpour, B., Vejandla, D. T., Novoa, C., Jimenez, J., & Fischer, R. (2009). Optimizing the quality of parts manufactured by the automated oxy-fuel cutting process using response surface methodology. In Proceedings of the 2009 International Solid Freeform Fabrication Symposium (pp. 47-60). Retrieved from: https://docplayer.net/21336145-Keywords-plasma- cutting- regression- model- desirability- function- optimization-experimental - design-rapid- manufacturing.html
[2]. Bhuvenesh, R., Norizaman, M. H., Manan, A. M. S. (2012). Surface roughness and MRR effect on manual plasma arc cutting machining. International Journal of Industrial and Manufacturing Engineering, 6(2), 459-462. Retrieved from https://waset.org/publications/6229/ surface-roughness-and-mrr-effect-on-manual-plasmaarc- cutting-machining
[3]. Bini, R., Colosimo, B. M., Kutlu, A. E., & Monno, M. (2008). Experimental study of the features of the kerf generated by a 200A high tolerance plasma arc cutting system. Journal of Materials Processing Technology, 19 6(1-3), 345-355. https://doi.org/10.1016/j.jmatprotec. 2007.05.061
[4]. Chamarthi, S., Reddy, N., Elipey, M., & Reddy, D. (2013). Investigation analysis of plasma arc cutting parameters on the unevenness surface of Hardox-400 Material. Procedia Engineering, 64, 854-861. https://doi.org/10.1016/j.proeng.2013.09.161
[5]. Ganta, V., & Chakradhar, D. (2014). An experimental investigation of hot machining performance parameters using oxy-acetylene gas setup. In 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) IIT Guwahati, Assam, India. Retrieved from https://pdfs.semantic scholar.org/61bc/f229feb7b226a038b31be59abb5ffe4 b4bf6.pdf
[6]. Gariboldi, E., & Previtali, B. (2005). High tolerance plasma arc cutting of commercially pure titanium. Journal of Materials Processing Technology, 160(1), 77- 89. Retrieved from https://www.deepdyve.com/lp/ else vier/high-tolerance-plasma - arc- cutting-of- commercially- pure-titanium-ZtXS2kcIc0
[7]. Gullu, A., & Atici, U. (2006). Investigation of the effects of plasma arc parameters on the structure variation of AISI 304 and St 52 steels. Article in Materials and Design 27 (10), 1157 - 1162. https : //doi.org/10.1016/ j.matdes.2005.02.014
[8]. Harish, M., & Babu, P. K. (2017). Analysis of Oxy-Fuel cutting process parameters using Grey-Taguchi technique for Mild Steel HRE350. International Journal of Innovative Technology and Research, 5(2), 5777-5783.
[9]. Hatala, M., & Orlovský, I. (2009). Mathematical modelling of plasma arc cutting technological process. th 13 International Research/Expert Conference, Trends in the Development of Machinery and Associated Technology (TMT), Hammamet, Tunisia, 65-68. Retrieved from: https://www.tmt.unze.ba/zbornik/TMT2009/017- TMT09-216.pdf
[10]. Ilii, S. M., Apetrei, L., & Carp, I. (2008). Considerations concerning plasma arc cutting rd machining. In 3 International Conference on Manufacturing Engineering (ICMEN), 185-192. Retrieved from https://pdfs.semanticscholar.org/f77e/fdddb 9f302fd33d96c68c0606b0d91c2ee94.pdf
[11]. Ilii, S. M., Coteana, M., & Munteanu, A. (2010). Experimental results concerning the variation of surface roughness parameter (Ra) at plasma arc cutting of a stainless steel workpiece. International Journal of Modern Manufacturing Technologies, 2(1), 31-36.
[12]. Kadirgama, K., Noor, M. M., Harun, W. S. W., & Aboue-El-Hossein, K. A. (2010). Optimisation of heat affected zone by partial swarm optimisation in air plasma cutting operation. Journal of Scientific and Industrial Research, 69(6), 439-443.
[13]. Kolhe, D., Sayyad, A., Nikam, D., Patole, U., & Narkhede J. A. (2018). Optimization in Parameters of CNC Flame Cutting Machine. International Research Journal of Engineering and Technology, 5(4), 493-497.
[14]. Pandya, H., Wani, R.. Patel, A., & Patel, V. (2016). Analysis of deviation observed during conventional oxyfuel cutting of low carbon steel pipes. International Research Journal of Engineering and Technology, 3(2). 828-832. Retrieved from: https://www.irjet.net/ archives/V3/i3/IRJET-V3I3178.pdf
[15]. Patel, J. A., Patel, K. H., Prajapati, C. B., Patel, M. D.,& Prajapati, R. B. (2014). A review paper on experimental investigation of plasma arc cutting by full factorial design. International Journal of Software & Hardware Research in Engineering, 2 (9), 22-25. Retrieved from https://ijournals. in/wp-content/uploads/2017/07/4.2910-Chirag.pdf.
[16]. Rana, K., Kaushik, P., & Chaudhary, S. (2013). Optimization of plasma arc cutting by applying Taguchi Method. International Journal of Enhanced Research in Science Technology & Engineering, 2(7), 106-110. Retrieved from https://pdfs.semanticscholar.org/3faf/ 307e20bd8ba37f7d34c7b1e831a9b3329c97.pdf
[17]. Rodovanovic, M., & Madic, M. (2011). Modeling the plasma arc cutting process using ANN. Nonconventional Technologies Review, 43-48. Retrieved from: https://pdfs.semanticscholar.org/bfcc/3b0a2b707a435 a6ef13889b7ddc6419cebac.pdf
[18]. Salonitis, K., & Vatousianos, S. (2012). Experimental investigation of the oxy-fuel arc cutting process. Procedia CIRP, 3, 287-292. https://doi.org/10.1016/j.procir. 2012.07.050
[19]. Suman, S., Singh, K., & Arya, H. K. (2017). Improvement in abrasive wear resistance by oxy acetylene flame spraying method. International Journal for Research in Applied Science & Engineering Technology, 5(8), 2261-2266. https://doi.org/10.22214/ ijraset.2017.8325
[20]. Xu, W. J., Fang, J. C., & Lu, Y. S. (2002). Study on ceramic cutting by plasma arc. Journal of Material Processing Technology, 129,152-156.