References
[1]. Ambilwade, R., Manza, R., & Kaur, R. (2016). Prediction of Diabetes Mellitus and its Complications using Fuzzy Inference System. International Journal of Emerging Technology and Advanced Engineering, 6(7), 2250-2459.
[2]. Carvajal, D. N., & Rowe, P. C. (2010). Sensitivity, specificity, predictive values, and likelihood ratios. Pediatr Rev., 31(12), 511-513.
[3]. Chaker, L., Ligthart, S., Korevaar, T. I., Hofman, A., Franco, O. H., Peeters, R. P., & Dehghan, A. (2016). Thyroid function and risk of type 2 diabetes: A population-based prospective cohort study. BMC Medicine, 14(1), 150.
[4]. Chandgude, N., & Pawar, S. (2016). Diagnosis of diabetes using fuzzy inference system. In 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), (pp.1-6). IEEE.
[5]. Chaturvedi, K., Patel, R., & Swami, D. K. (2015). Fuzzy C-Means based Inference Mechanism for Association Rule Mining: A Clinical Data Mining Approach. International Journal of Advanced Computer Science and Applications, 6(6), 103-110.
[6]. Choi, B. G., Rha, S. W., Kim, S. W., Kang, J. H., Park, J. Y., & Noh, Y. K. (2019). Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks. Yonsei Medical Journal, 60(2), 191-199.
[7]. Duntas, L. H., Orgiazzi, J., & Brabant, G. (2011). The interface between thyroid and diabetes mellitus. Clinical Endocrinology, 75(1), 1-9.
[8]. Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32-57.
[9]. Gronich, N., Deftereos, S. N., Lavi, I., Persidis, A. S., Abernethy, D. R., & Rennert, G. (2015). Hypothyroidism is a risk factor for new-onset diabetes: a cohort study. Diabetes Care, 38(9), 1657-1664.
[10]. Hage, M., Zantout, M. S., & Azar, S. T. (2011). Thyroid disorders and diabetes mellitus. Journal of Thyroid Research, 2011, Article ID 439463. http://dx.doi.org/10.4061/2011/439463
[11]. Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In ACM Sigmod record, 29(2),1-12.
[12]. Harrar, S. (2019). Low Thyroid Hormone Raises Risk of Type2 Diabetes, Retrieved from https://www.endo crineweb.com/news/diabetes/55372-low-thyroid- hormone- raises-risk-type-2-diabetes
[13]. Jayanthi, N., Babu, B. V., & Rao, N. S. (2017). Survey on clinical prediction models for diabetes prediction. Journal of Big Data, 4(1), 26. DOI: 10.1186/s40537-017- 0082-7
[14]. Johnson, J. L., & Duick, D. S. (2002). Diabetes and thyroid disease: A likely combination. Diabetes Spectrum, 15(3), 140-142.
[15]. Kost, R., Littenberg, B., & Chen, E. S. (2012). Exploring generalized association rule mining for disease co- occurrences. In AMIA Annual Symposium Proceedings, (pp.1284-1293).
[16]. Li, Y., Li, H., & Yao, H. (2018). Analysis and Study of Diabetes Follow-Up Data using a Data-Mining-Based Approach in New Urban Area of Urumqi, Xinjiang, China, 2016-2017. Computational and Mathematical Methods in Medicine.
[17]. Norman, A. (2018). Your future doctor may not be human. This is the rise of AI in Medicine. Futurism–SciFi Visions. Çevrimiçi (Erişim, 1 Şubat 2018), Retrieved from https://futurism. com/ai-medicine-doctor.
[18]. Patricia, W. (August, 2017). Thyroid Disordrs and Diabetes. Retrieved from https://www.diabetesself management.com/about-diabetes/general-diabetes- information/ thyroid-disorders-and-diabetes/
[19]. Sneha, N., & Gangil, T. (2019). Analysis of diabetes mellitus for early prediction using optimal features selection. Journal of Big Data, 6(1), 13
[20]. Wang, C. (2015). A study of membership functions on mamdani-type fuzzy inference system for industrial decision-making. Theses and Dissertations. Paper 1665.
[21]. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
[22]. Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M., Yang,G., & Chen, Y. (2017). A machine learning-based framework to identify type 2 diabetes through electronic health records. International Journal of Medical Informatics, 97, 120-127.