References
[1]. Amabogha, B. (2013). Corrosion in thermal energy generating plants. International Journal of Engineering, 4(4), 29-35.
[2]. Arora, H. S., Singh, H., & Dhindaw, B. K. (2013). Wear behaviour of a Mg alloy subjected to friction stir processing. Wear, 303(1-2), 65-77. https://doi.org/10. 1016/j.wear.2013.02.023
[3]. Bhadeshia, H., & Honeycombe, R. (2017). Steels: Microstructure and Properties (4th ed.). Cambridge: Butterworth-Heinemann.
[4]. Chang, C. I., Du, X. H., & Huang, J. C. (2007). Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing. Scripta Materialia, 57(3), 209-212. https://doi. org/10.1016/j.scriptamat.2007.04.007
[5]. Chang, C., Du, X. H., & Huang, J. C. (2008). Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing. Scripta Materialia, 59(3), 356-359. https://doi.org/10.1016/j.scriptamat.2008.04.003
[6]. Chawla, V., Chawla, A., Puri, D., Prakash, S., Gurbuxani, P. G., & Sidhu, B. S. (2011). Hot corrosion & erosion problems in coal based power plants in India and possible solutions–a review. Journal of Minerals and Materials Characterization and Engineering, 10(04), 367- 385.
[7]. De, P. S., Mishra, R. S., & Smith, C. B. (2009). Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy. Scripta Materialia, 60(7), 500-503. https://doi.org/10.1016/j.scriptamat.2008.11.032
[8]. El-Danaf, E. A., El-Rayes, M. M., & Soliman, M. S. (2010). Friction stir processing: An effective technique to refine grain structure and enhance ductility. Materials & Design, 31(3), 1231-1236. https://doi.org/10.1016/j. matdes.2009.09.025
[9]. Estrin, Y., Finel, A., Veron, M., & Mazière, D. (2002). Thermodynamics, Microstructures, and Plasticity. NATO Advanced Study Institute on Thermodynamics. Microstructures and Plasticity, Kluwer Academic Publishers, France, 217-238.
[10]. Grewal, H. S., Arora, H. S., Singh, H., & Agrawal, A. (2013). Surface modification of hydroturbine steel using friction stir processing. Applied Surface Science, 268, 547-555. https://doi.org/10.1016/j.apsusc.2013.01.006
[11]. Hajian, M., Abdollah-Zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M. M., Chung, K., & Shokouhimehr, M. (2014). Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Applied Surface Science, 308, 184-192. https://doi.org/ 10.1016/j.apsusc.2014.04.132
[12]. Hajian, M., Abdollah-Zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M. M., Chung, K., & Shokouhimehr, M. (2015). Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel. Materials & Design, 67, 82-94. https://doi.org/10.1016/j.matdes. 2014.10.082
[13]. Karthikeyan, L., Senthilkumar, V.S., Balasubramanian, V., & Natarajan, S. (2009). Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy. Materials & Design, 30(6), 2237-2242. https://doi.org/10. 1016/j.matdes.2008.09.006
[14]. Kumar, R., Singh, R., & Kumar, S. (2018). Erosion and hot corrosion phenomena in thermal power plant and their preventive methods: A study. Asian Review of Mechanical Engineering, 7(1), 38-45.
[15]. Lathabai, S., Ottmüller, M., & Fernandez, I. (1998). Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings. Wear, 221(2), 93-108. https://doi.org/10.1016/S0043-1648(98)00267-1
[16]. Liechty, B. C., & Webb, B. W. (2008). Flow field characterization of friction stir processing using a particlegrid method. Journal of Materials Processing Technology, 208(1-3), 431-443. https://doi.org/10.1016/j.jmatprotec. 2008.01.008
[17]. Lorenzo-Martin, C., & Ajayi, O. O. (2015). Rapid sur face hardening and enhanced tribological performance of 4140 steel by friction stir processing. Wear, 332, 962-970. https://doi.org/10.1016/j.wear.2015. 01.052
[18]. Ma, Z. Y., Liu, F. C., & Mishra, R. S. (2010). Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Materialia, 58(14), 4693-4704. https://doi.org/10.1016/j. actamat.2010.05.003
[19]. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50, 1-78. https://doi.org/10.1016/j.mser.2005.07.00
[20]. Nagaoka, T., Kimoto, Y., Watanabe, H., Fukusumi, M., Morisada, Y., & Fujii, H. (2015). Friction stir processing of a D2 tool steel layer fabricated by laser cladding. Materials & Design, 83, 224-229. https://doi.org/10.1016/ j.matdes.2015.06.040
[21]. Ni, D. R., Wang, D., Feng, A. H., Yao, G., & Ma, Z. Y. (2009). Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scripta Materialia, 61(6), 568-571. https://doi.org/10.1016/j. scriptamat.2009.05.023
[22]. Nicholas, E. D. (2003). Friction processing technologies. Welding in the World, 47(11-12), 2-9.
[23]. Rahbar-Kelishami, A., Abdollah-Zadeh, A., Hadavi, M. M., Seraj, R. A., & Gerlich, A. P. (2014). Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing. Applied Surface Science, 316, 501-507. https://doi.org/10.1016/j.apsusc.2014.08.033
[24]. Su, J. Q., Nelson, T. W., & Sterling, C. J. (2005). Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Materialia, 52(2), 135-140. https://doi.org/10. 1016/j.scriptamat.2004.09.014
[25]. Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith P., & Dawes, C.J., (1991). Friction stir butt welding. Int. Patent No. PCT/GB92/02203.
[26]. Wood, R. J. K., Mellor, B. G., & Binfield, M. L. (1997). Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear, 211(1), 70-83. https://doi.org/10.1016/S0043-1648(97) 00071-9
[27]. Xue, P., Li, W. D., Wang, D., Wang, W. G., Xiao, B. L., & Ma, Z. Y. (2016). Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Materials Science and Engineering: A, 670, 153-158. https://doi.org/10.1016/j. msea.2016.06.014
[28]. Xue, P., Ma, Z. Y., Komizo, Y., & Fujii, H. (2016). Achieving ultrafine-grained ferrite structure in friction stir processed weld metal. Materials Letters, 162, 161-164. https://doi.org/10.1016/j.matlet.2015.09.115
[29]. Xue, P., Xiao, B. L., & Ma, Z. Y. (2013). Achieving largearea bulk ultrafine grained Cu via submerged multiplepass friction stir processing. Journal of Materials Science & Technology, 29(12), 1111-1115. https://doi.org/10. 1016/j.jmst.2013.09.021
[30]. Xue, P., Xiao, B. L., Wang, W. G., Zhang, Q., Wang, D., Wang, Q. Z., & Ma, Z. Y. (2013). Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science and Engineering: A, 575, 30-34. https://doi.org/ 10.1016/j.msea.2013.03.033