References
[1]. Altenkamp, D., & Mehlhorn, K. (1980). Codes: Unequal Probabilities, Unequal Letter Costs. Journal of the Association for Computing Machinery, 27(3), 412-427.
[2]. Arrebola, F., & Sandoval, F. (2005). Corner detection and curve segmentation by multiresolution chain-code linking. Pattern Recognition, 38(10), 1596-1614.
[3]. Bradford, P., Golin, M. J., Larmore, L. L., & Rytter, W. (2002). Optimal prefix-free codes for unequal letter costs: Dynamic programming with the Monge property. Journal of Algorithms, 42(2), 277-303.
[4]. Bribiesca, E. (1992). A geometric structure for twodimensional shapes and three-dimensional surfaces. Pattern Recognition, 25(5), 483-496.
[5]. Bribiesca, E. (1999). A new chain code. Pattern Recognition, 32(2), 235-251.
[6]. Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001). Introduction to Algorithms, 2nd Ed. McGraw-Hill Higher Education.
[7]. Cot, N. (1978). Characterization and Design of Optimal Prefix Codes, (Doctoral Dissertation), Stanford University.
[8]. Freeman, H. (1961). On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers,10(2), 260-268.
[9]. Gilbert, E. N. (1995). Coding with digits of unequal cost. IEEE Transactions on Information Theory, 41(2), 596- 600.
[10]. Globačnik, T., & Žalik, B. (2010). An efficient raster font compression for embedded systems. Pattern Recognition, 43(12), 4137-4147.
[11]. Golin, M. J., & Young, N. (1996). Prefix codes: Equiprobable words, unequal letter costs. SIAM Journal on Computing, 25(6), 1281-1292.
[12]. Golin, M. J., Kenyon, C., & Young, N. E. (2002, May). Huffman coding with unequal letter costs. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (pp. 785-791). ACM.
[13]. Golin, M. J., Mathieu, C., & Young, N. E. (2012). Huffman coding with letter costs: A linear-time approximation scheme. SIAM Journal on Computing, 41 (3), 684-713.
[14]. Ho, K. I., Chen, T. S., & Cheug, C. Y. (2002). An efficient face detection method using skin-color discovering and chain code. Machine Graphics & Vision International Journal, 11(2/3), 241- 256.
[15]. Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, (Vol.40, No.9, pp.1098-1101).
[16]. Kabir, S., Azad, T., & Alam, A. A. (2014, December). Freeman chain code with digits of unequal cost. In The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014) (pp. 1-6). IEEE.
[17]. Kabir, S., Azad, T., Alam, A. A., & Kaykobad, M. (2014, December). Effects of unequal bit costs on classical huffman codes. In 2014 17th International Conference on Computer and Information Technology (ICCIT) (pp. 96-101). IEEE
[18]. Karp, R. (1961). Minimum-redundancy coding for the discrete noiseless channel. IRE Transactions on Information Theory, 7(1), 27-38.
[19]. Kaygın, S., & Bulut, M. M. (2001). A new one-pass algorithm to detect region boundaries. Pattern Recognition Letters, 22(10), 1169-1178.
[20]. Krause, R. M. (1962). Channels which transmit letters of unequal duration. Information and Control, 5(1), 13- 24.
[21]. Liu, Y. K., & Žalik, B. (2005). An efficient chain code with Huffman coding. Pattern Recognition, 38(4), 553- 557.
[22]. Liu, Y. K., Wei, W., Wang, P. J., & Žalik, B. (2007). Compressed vertex chain codes. Pattern Recognition, 40(11), 2908-2913.
[23]. Liu, Y. K., Žalik, B., Wang, P. J., & Podgorelec, D. (2012). Directional difference chain codes with quasilossless compression and run-length encoding. Signal Processing: Image Communication, 27(9), 973-984.
[24]. Mannanand, M. A., & Kaykobad, M. (2003). Block Huffman Coding. Computers and Mathematics with Applications, 46(10-11), 1581-1587.
[25]. Nunes, P., Marqués, F., Pereira, F., & Gasull, A. (2000). A contour-based approach to binary shape coding using a multiple grid chain code. Signal Processing: Image Communication, 15(7-8), 585-599.
[26]. Perl, Y., Garey, M. R., & Even, S. (1975). Efficient generation of optimal prefix code: Equiprobable words using unequal cost letters. Journal of the ACM (JACM), 22(2), 202-214.
[27]. Priyadarshini, S., & Sahoo, G. (2011). A new lossless chain code compression scheme based on substitution. International Journal of Signal and Imaging Systems Engineering, 4(1), 50-56.
[28]. Putra, I. K. G. D., & Sentosa, M. A. (2012). Hand geometry verification based on chain code and dynamic time warping. International Journal of Computer Applications, 38(12), 17-22.
[29]. Redmond, W. A. (1964). International Morse code. Microsoft En-carta 2009 [DVD], 275-278.
[30]. Ren, M., Yang, J., & Sun, H. (2002). Tracing boundary contours in a binary image. Image and Vision Computing, 20(2), 125-131.
[31]. Shih, F. Y., & Wong, W. T. (1999). A one-pass algorithm for local symmetry of contours from chain codes. Pattern Recognition, 32(7), 1203-1210.
[32]. Shih, F. Y., & Wong, W. T. (2001). An adaptive algorithm for conversion from quadtree to chain codes. Pattern Recognition, 34(3), 631-639.
[33]. Sun, H., Yang, J., & Ren, M. (2005). A fast watershed algorithm based on chain code and its application in image segmentation. Pattern Recognition Letters, 26(9), 1266-1274.
[34]. Varn, B. (1971). Optimal variable length codes (arbitrary symbol cost and equal code word probability). Information and Control, 19(4), 289-301.
[35]. Weng, T. L., Lin, S. J., Chang, W. Y., & Sun, Y. N. (2002). Voxel-based texture mapping for medical data. Computerized Medical Imaging and Graphics, 26(6), 445- 452.
[36]. Žalik, B., & Lukač, N. (2014). Chain code lossless compression using move-to-front transform and adaptive run-length encoding. Signal Processing: Image Communication, 29(1), 96-106.