Recent Advancement on Photonic Feeding of Antennas for Microwave Beam Steering

0*, Sanjeev Kumar Raghuwanshi**, R.K.Yadav***
*_**Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
***Skyline Institute of Technology, Greater,Noida, India.
Periodicity:November - January'2019
DOI : https://doi.org/10.26634/jcs.8.1.15888

Abstract

Using light to exchange RF signal has rapidly developed since the innovation of optical fiber and semiconductor laser in 1960's. A Photonics Antenna (PA), which brings together the worlds of radiofrequency engineering (radiation of EM wave) and optoelectronics devices (laser, photo diode), has attracted and give great importance from both the research group of people and the commercial sector over the past 30 years and is set to have a bright future. The essential focal point of photonics for antenna system has, truly, been on the advancement of connection and beam steering techniques. By utilizing photonically controlled gadgets and materials it is conceivable to deliver progressive changes in receiving antenna components and in the structure and properties of exhibits, opening the new door for another class of Antenna. This technology enables complex or even impossible functions in the field of radiofrequency (RF) in microwave systems and creates new opportunities fortelecommunications networks. We present the technology of the photonics community and summarize current research and important applications. This review paper summarizes the comprehensive study of photonics feeding antenna, or Photonics for antenna characteristics, possible applications and wireless communication challenges of this promising type of Antenna.

Keywords

Photonics Active Integrated Antenna (PhAIA), Photonic feeding antenna, microstrip patch antenna, Radio-over-fiber (RoF)

How to Cite this Article?

Nadeem, Md. D., Raghuwanshi, S. K., & Yadav, R. K. (2019). Recent Advancement on Photonic Feeding of Antennas for Microwave Beam Steering. i-manager's Journal on Communication Engineering and Systems, 8(1), 1-10. https://doi.org/10.26634/jcs.8.1.15888

References

[1]. Aiello, G. R., & Rogerson, G. D. (2003). Ultra-wideband wireless systems. IEEE Microwave Magazine, 4(2), 36-47.
[2]. Balakrishnan, J., Batra, A., & Dabak, A. (2003, November). A multi-band OFDM system for UWB communication. In IEEE Conference on Ultra Wideband Systems and Technologies, 2003 (pp. 354-358). IEEE.
[3]. Chang, W. S. (Ed.). (2007). RF photonic technology in optical fiber links. Cambridge University Press. 10.1017/CBO9780511755729.
[4]. Chen, J., Ram, R. J., & Helkey, R. (1999). Linearity and third - order intermodulation distortion in DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 35(8), 1231-1237.
[5]. Chuang, C. H., Liu, C. P., Ismail, T., Wang, X., Hao, Y., Parini, C., ... & Seeds, A. J. (2008). IEEE 802.11 a Data Over Fiber Transmission using Electromagnetic Bandgap Photonic Antenna with Integrated Asymmetric Fabry–Pérot Modulator/Detector. Journal of Lightwave Technology, 26(15), 2671-2678.
[6]. Cox, C. H. (2006). Analog optical links: Theory and practice. Cambridge University Press. https://doi.org/ 10.1017/CBO9780511536632.
[7]. Cox, C. H., Ackerman, E. I., Betts, G. E., & Prince, J. L. (2006). Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Transactions on Microwave Theory and Techniques, 54(2), 906-920.
[8]. Dai, Y., & Yao, J. (2008). Optical generation of binary phase-coded direct-sequence UWB signals using a multichannel chirped fiber Bragg grating. Journal of Lightwave Technology, 26(15), 2513-2520.
[9]. David, K. (Ed.). (2008). Technologies for the Wireless Future: Wireless World Research Forum (WWRF). John Wiley & Sons (vol. 3) pp. 9.
[10]. Fakoukakis, F. E., Kaifas, T. N., & Kyriacou, G. A. (2012). Ultra-wideband radio frequency beamforming using microwave BFNs. In Progress in Electromagnetics Research Symp. (PIERS) (pp. 19-23). Moscow, Russia.
[11]. Ishida, H., & Araki, K. (2004, June). Design and analysis of UWB band pass filter with ring filter. In 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535) (Vol. 3, pp. 1307-1310). IEEE.
[12]. Ismail, M. F. (2011). Frequency Reconfigurable Logperiodic Antenna Design (Doctoral dissertation) Universiti Teknologi Malaysia.
[13]. Jia, Z. (2008). Optical millimeter-wave signal generation, transmission and processing for symmetric super-broadband optical-wireless access networks (Doctoral dissertation) Georgia Institute of Technology.
[14]. Lee, C. H. (2013). Microwave Photonics. CRC press. https://doi.org/10.1201/b13886.
[15]. Lim, C., Nirmalathas, A. T., Lee, K. L., Novak, D., & Waterhouse, R. (2007). Intermodulation distortion improvement for fiber–radio applications incorporating OSSB+ C modulation in an optical integrated-access environment. Journal of Lightwave Technology, 25(6), 1602-1612.
[16]. Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Lee, K. L., Yang, Y., ... & Waterhouse, R. (2009). Fiberwireless networks and subsystem technologies. Journal of Lightwave Technology, 28(4), 390-405.
[17]. Lin, W. P., & Chen, J. Y. (2005). Implementation of a new ultrawide-band impulse system. IEEE Photonics Technology Letters, 17(11), 2418-2420
[18]. Marti, J., & Capmany, J. (2009). Microwave photonics and radio-over-fiber research. IEEE Microwave Magazine, 10(4), 96-105.
[19]. Nanyan, N. F., Ngah, R., Prakoso, T., Rahayu, Y., & Rahman, T. A. (2010a, July). An active downlink photonic antenna. In International Conference on Photonics 2010 (pp. 1-5). IEEE.
[20]. Nanyan, N. F., Hashim, S. Z. M., Ngah, R., Rahayu, Y., & Prakoso, T. (2010b, November). An active uplink photonic antenna. In 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (pp. 1-4). IEEE.
[21]. Nassar, C. R., Zhu, F., & Wu, Z. (2003, May). Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput. In IEEE International Conference on Communications, 2003. ICC'03 (Vol. 3, pp. 2180-2186). IEEE.
[22]. Novak, D., & Waterhouse, R. (2013, March). Emerging disruptive wireless technologies-Prospects and challenges for integration with optical networks. In 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (pp. 1-3). IEEE.
[23]. O'Connor, S. R., Clark, T. R., & Novak, D. (2008). Wideband adaptive feedforward photonic link. Journal of Lightwave Technology, 26(15), 2810-2816.
[24]. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: potential and challenges ahead. IEEE Communications Magazine, 41(7), 66-74.
[25]. Prakoso, T., Ngah, R., & Rahman, T. A. (2008, December). Active photonic antenna for wireless communications at 2.4 GHz. In 2008 IEEE International RF and Microwave Conference (pp. 446-449). IEEE.
[26]. Prakoso, T., Ngah, R., Rahman, T. A., & Mualif, M. A. (2008, December). 5.8 GHz photonic antenna for point to point applications. In 2008 IEEE International RF and Microwave Conference (pp. 131-134). IEEE.
[27]. Sittakul, V., & Cryan, M. J. (2007). A fully bidirectional 2.4-GHz wireless-over-fiber system using Photonic Active Integrated Antennas (PhAIAs). Journal of Lightwave Technology, 25(11), 3358-3365.
[28]. Suresh, L. R. D., & Sundaravadivelu, D. S. (2007). Design of novel photonic antenna for optical wireless communication by analyzing non linear filtering effects using advanced optical signal processing method. International Journal of Imaging Science and Engineering (IJISE), 1(1).
[29]. Tzeremes, G., Tanner, H., Liao, T., & Christodoulou, C. (2004). Wireless communication with smart photonic antennas using transmission power control. IEEE Antennas and Wireless Propagation Letters, 3, 232-235.
[31]. Wang, Q., & Yao, J. (2008). Approach to all-optical bipolar direct-sequence ultrawideband (UWB) coding. Optics Letters, 33(9), 1017-1019.
[32]. Way, W. (1987). Large signal nonlinear distortion prediction for a single-mode laser diode under microwave intensity modulation. Journal of Lightwave Technology, 5(3), 305-315.
[33]. Yang, L., & Giannakis, G. B. (2004). Ultra-wideband communications: An idea whose time has come. IEEE Signal Processing Magazine, 21(6), 26-54.
[34]. Yao, J. (2009a). Microwave photonics. Journal of Lightwave Technology, 27(3), 314-335
[35]. Yao, J. (2009b). Photonics for ultrawideband communications. IEEE Microwave Magazine, 10(4), 82- 95.
[36]. Yao, J., Zeng, F., & Wang, Q. (2007). Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 25(11), 3219-3235.
[37]. Yashchyshyn, Y., Chizh, A., Malyshev, S., & Modelski, J. (2010). Technologies and applications of microwave photonic antennas. International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), Lviv-Slavske, 11-14.
[38]. Yashchyshyn, Y., Modelski, J., Malyshev, S., Chizh, A., Svirie, M., & Wegrzyniak, P. (2007, October). Near field antennas measurements using photonic antenna. In 2007 European Microwave Conference (pp. 576-579). IEEE.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.