On Construction of Discrete Wrapped Lindley Distribution

R. Srinivas*, G. V. L. N. Srihari**, S. V. S. Girija***
*Assistant Professor, Department of Mathematics, Hindu College, Guntur, Andhra Pradesh, Telangana, India.
** Associate Professor, Department of Mathematics, Aurora's Scientific Technological and Research Academy, Hyderabad, Andhra Pradesh, Telangana, India.
*** Associate Professor, Department of Mathematics, Hindu College, Guntur, Andhra Pradesh, Telangana, India.
Periodicity:October - December'2018
DOI : https://doi.org/10.26634/jmat.7.4.15874

Abstract

In this paper, a new discrete circular distribution is constructed by applying the method of discretization for existing continuous circular distribution. The Wrapped Lindley Distribution is discretized and new circular model is Discrete Wrapped Lindley distribution. The probability mass function, cumulative distribution function, and characteristic function of the Discrete Wrapped Lindley Distribution are derived and population characteristics are studied using first two trigonometric moments. The graphs of the probability mass function and cumulative distribution function are plotted for different values of parameter by using MATLAB.

Keywords

Probability Mass Function, Distribution Function, Characteristic Function, Trigonometric Moments.

How to Cite this Article?

Srinivas, R., Srihari, G. V. L. N., & Girija, S. V. S. (2008). On Construction of Discrete Wrapped Lindley Distribution, i-manager's Journal on Mathematics, 7(4), 10-19. https://doi.org/10.26634/jmat.7.4.15874

References

[1]. Devaraaj, V. J., Girija, S. V. S., & Rao, A. D. (2017). Cut-off points for various tests for circular uniformity. i-manager's Journal on Mathematics, 5(4), 29-38. https://doi.org/10.26634/jmat.6.4.13863.
[2]. Girija, S. V. S., Rao, A. D., & Srihari, G. V. L. N. (2014a). On wrapped binomial model characteristics. Mathematics and Statistics, 2(7), 231-234.
[3]. Girija, S. V. S., Rao, A. D., & Srihari, G. V. L. N. (2014b). On characteristic function of wrapped poisson distribution. International Journal of Mathematical Archive, 5(5), 168-173.
[4]. Girija, S. V. S. (2010). Construction of New Circular Models, VDM Verlag Dr. Müller GmbH & Co.
[5]. Jacob, S. & Jayakumar, K. (2013). Wrapped geometric distribution: A new probability model for circular data. Journal of Statistical Theory and Applications, 12(4), 348-355.
[6]. Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in Circular Statistics. World Scientific Press, Singapore.
[7]. Joshi, S., & Jose, K. K. (2018). Wrapped lindley distribution. Communications in Statistics-Theory and Methods, 47(5), 1013-1021.
[8]. Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. John Wiley, Chichester.
[9]. Phani, Y. (2013). On Stereographic Circular and Semicircular Models (Unpublished Ph.D. Thesis, Acharya Nagarjuna University).
[10]. Radhika, A. J. V. (2014). Mathematical Tools in the Construction of New Circular Models (Unpublished thesis submitted to Acharya Nagarjuna University).
[11]. Rao, A. V. D., Sarma, I. R., & Girija, S. V. S. (2007). On wrapped version of some life testing models. Communications in Statistics-Theory and Methods, 36(11), 2027-2035.
[12]. Sastry, Ch. V. (2016). On l-Axial Models (Unpublished PhD. Thesis, Acharya Nagarjuna University).
[13]. Srihari, G. V. L. N., Girija, S. V. S., & Rao, A. V. D. (2018a). On discrete wrapped exponential distribution-characteristics. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(2), 57-64.
[14]. Srihari, G. V. L. N., Girija, S. V. S., & Rao A.V. D. (2018b). On wrapped negative binomial model. International Journal of Mathematical Archive, 9(5), 1-6.
[15]. Srihari, G. V. L. N., Girija, S. V. S., & Rao, A.V. D. (2018c). On characteristics of wrapped logarithmic model. International Journal of Current Trends in Science and Technology, 8(4), 20413-20419.
[16]. Wang, M., & Shimizu, K. (2014). Discrete Cardioid Distribution. Conference on Advances and Applications in Distribution Theory. The Institute of Statistical Mathematics, Tokyo, Japan.
[17]. Yedlapalli, P., Girija, S. V. S., Rao, A. D., & Srihari, G. V. L. N. (2015). Symmetric circular model induced by inverse stereographic projection on double Weibull distribution with application. International Journal of Soft Computing, Mathematics and Control, 4(1), 69-76.
[18]. Yedlapalli, P., Girija, S. V. S., & Rao, A. V. D. (2017). On l-Axial Chi-Square Distribution. i-manager's Journal on Mathematics, 6(4), 51-58.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.