References
[1]. Abubakar, U., Bashir, S. A., Abdullahi, M. B., & Adebayo, O. S. (2019). Comparative study of various machine learning algorithms for tweet classification. i-manager's Journal on Computer Science, 6(4), 12-24.
[2]. Agarwal, S., & Sureka, A. (2016). But I Did Not Mean It! Intent Classification of Racist Posts on Tumblr. European Intelligence and Security Infromatics Conference (pp. 124-127). IEEE. doi:10. 17632/hd3b6v659v.2
[3]. Albadi, N., Kurdi, M., & Mishra, S. (2018). Are they our brother? Analysis and detection of religious hate speech in the Arabic twittersphere. International Conference on Advances in Social Networks Analysis and Mining (pp. 69- 76). IEEE.doi:10.1109/ASONAM.2018.8508247
[4]. Alfina, I., Mulia, R., Fanany, M., & Ekanata, Y. (2017). Hate speech detection in the indonesian language: a dataset and preliminary study. International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 233-238). IEEE. doi:10.1109/ ICACSIS.2017.8355039
[5]. Al-Quirishi, M., Aldrees, R., AlRubaian, M., Al- Rakhami, M., Rahman, M. S., & Alamri, A. (2015). A new model for classifying social media users according to their behaviors. World Symposium on Web Applications and Networking (WSWAN) (pp. 1-5). IEEE. doi:10.1109/WSWAN.2015.7209085
[6]. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,…..& Zhang, Y., (2016). Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688v1 [cs.SC]
[7]. Aphinyanaphongs, Y., Ray, B., Statnikov, A., & Krebs, P. (2014, August). Text classification for automatic detection of alcohol use-related tweets: A feasibility study. In th Proceedings of the 2014 IEEE 15 International Conference on Information Reuse and Integration (IEEE IRI 2014) (pp. 93-97). IEEE. doi:10.1109/IRI.2014.7051877
[8]. Chikashi, N., Joel, T., Achint, T., Yashar, M., & Yi, C. (2016). Abusive Language Detection in Online User Content. International World Wide Web Conference (pp. 145-153). Association of Computing Machinery (ACM). doi:dx.doi.org/10.1145/ 2872427.2883062
[9]. Cufoglu, A. (2014). User Profiling - A Short Review. International Journal of Computer Applications, 108(3), 1-9. doi:10.5120/18888-0179
[10]. Dey, R., & Salemt, F. M. (2017, August). Gate-variants of Gated Recurrent Unit (GRU) neural networks. In 2017 th IEEE 60 International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1597-1600). IEEE. doi:10.1109/MWSCAS.2017.8053243
[11]. Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., & Bhamidipati, N. (2015, May). Hate speech detection with comment embeddings. In th Proceedings of the 24 International Conference on World Wide Web (pp. 29-30). ACM. doi:dx.doi.org/10.1145/ 2740908.2742760.
[12]. DL4J (2017, August 12). Deep Learning and Neural Network Glossary. Retrieved March 23, 2018, from https://deeplearning4j.org/cn/glossary
[13]. Fatahillah, N., Suryati, P., & Haryawan, P. (2017). Implementation of Naïve Bayes Classifier Algorithm on Social Media (Twitter) to the Teaching of Indonesian Hate Speech. International Conference on Sustainable Information Engineering and Technology (pp. 128-131). IEEE. doi:10.1109/SIET.2017.8304122
[14]. Ikeda, K., Hattori, G., Ono, C., Asoh, H., & Higashino, T. (2013). Twitter user profiling based on text and community mining for market analysis. Knowledge-Based Systems, 51, 35-47. doi:10.1016/j.knosys.2013.06.020
[15]. Iqbal, M. (2019, February 27). Twitter Revenue and Usage Statistics. Business of Apps, Retrieved March 02, 2019, from http://www.businessofapps.com
[16]. Kang, K., Yoon, C., & Kim, E. Y. (2016, January). Identifying Depressive Users in Twitter Using Multimodal Analysis. In 2016 International Conference on Big Data and Smart Computing (BigComp) (pp. 231-238). IEEE. doi:10.1109/BIGCOMP.2016.7425918
[17]. Keras. (n.d.). The Python Deep Learning Library. Retrieved July 10, 2018, from https://keras.io/
[18]. Lee, W. J., Oh, K. J., Lim, C. G., & Choi, H. J. (2014, February). User profile extraction from Twitter for th personalized news recommendation. In 16 International Conference on Advanced Communication Technology (pp. 779-783). IEEE. doi:10.1109/ICACT.2014.6779068
[19]. Lundeqvist, E., & Svensson, M. (2017). Author Profiling: A Machine Learning approach towards detecting gender, age, and native language of users in social media. UPPSALA University, Department of Information Technology.
[20]. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Represenations in Vector Space. CoRR, abs/1301.3781. doi:https://arxiv.org/abs/ 1301.3781
[21]. Neethu, M. S., & Rajasree, R. (2013, July). Sentiment Analysis in Twitter using Machine Learning Techniques. International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1-5). IEEE. doi:10.1109/ICCCNT.2013.6726818
[22]. O'Dea, B., Wan, S., Batterham, P. J., Calear, A. L., Paris, C., & Christensen, H. (2015). Detecting suicidality on Twitter. Internet Interventions, 2(2), 183 - 188. doi:10.1016/j.invent.2015.03.005
[23]. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods In Natural Language Processing (EMNLP) (pp. 1532-1543).
[24]. Pitsilis, K. G., Ramampiaro, H., & Langseth, H. (2018). Detecting Offensive Langauge in Tweets using Deep Learning. New York: Cornell University. arXiv:1801.04433v1 [cs.CL]
[25]. Rehurek, R. (2019, April 10). Topic modelling for humans. Retrieved July 10, 2018, from Gensim: https://radimrehurek.com/gensim/
[26]. Rocha, E., Francisco, P. A., Calado, P., & Sofia-Pinto, H. (2011). User Profiling on Twitter. Semantic Web Journal. Retrieved May 12, 2018, from http://www.semantic-webjournal. net
[27]. Sureka, A., & Agarwal, S. (2014, September). Learning to classify hate and extremism promoting tweets. In 2014 IEEE Joint Intelligence and Security Informatics Conference (pp. 320-320). IEEE. doi:10.1109/JISIC.2014.65
[28]. TensorFlow. (n.d.). An end-to-end open source machine learning platform. Retrieved July 10, 2018, from https://www.tensorflow.org/
[29]. Twitter. (n.d.). Filter Realtime Tweets. Retrieved January 20, 2018, from Twitter Developer : https://developer.twitter.com/en/docs/tweets/filterrealtime/ api-reference/post-statuses-filter.html
[30]. Watanabe, H., Bouazizi, M., & Ohtsuki, T. (2018). Hate speech on twitter: a pragmatic approach to collect hateful and offensive expressions and perform hate speech detection. IEEE Access, 6, 13825-13835. doi:10.1109/ACCESS.2018.2806394
[31]. Wikarsa, L., & Thahir, S. N. (2015, November). A text mining application of emotion classifications of Twitter's st users using Naïve Bayes method. In 2015 1 International Conference on Wireless and Telematics (ICWT) (pp. 1-6). IEEE. doi:10.1109/ICWT.2015.7449218
[32]. Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from social media data. Transportation Research Part C: Emerging Technologies, 86, 580-596. doi:10.1016/j.trc.2017.11.027