Design and Analysis of First Stage Rocket Engine using Butane and Liquid Oxygen

Samarpan Deb Majumder*
Department of Mechanical Engineering, Institute of Engineering and Management, Kolkata, West Bengal, India.
Periodicity:May - July'2019
DOI : https://doi.org/10.26634/jme.9.3.15806

Abstract

The manuscript demonstrates the designing of a first stage rocket engine using butane as a fuel and liquid oxygen as the oxidizer combination for yielding higher values of heat of combustion, Mach number, specific Impulse and the exit velocity through the nozzle. The purpose of this research is to provide a fuel oxidizer combination whose heat of combustion would be much higher. With a higher calorific value of butane, it needs very little oxidizer to burn resulting in reducing the weight of the rocket. Chemical Experimental Analysis has shown that the calorific value of butane and liquid oxygen together will yield much higher values in comparison to that of the present combination of fuel and oxidizers. The research paper analyses the design calculations of the space shuttle engine; Solid Works Design of complete Rocket Engine; comparative study of the model rocket with the Orion test rocket; CFD analysis of Rocket Engine.

Keywords

Combustion, Exit Velocity, Fuel, Butane, Liquid Oxygen.

How to Cite this Article?

Majumder, S. D. (2019). Design and Analysis of First Stage Rocket Engine using Butane and Liquid Oxygen. i-manager’s Journal on Mechanical Engineering, 9(3), 32-41. https://doi.org/10.26634/jme.9.3.15806

References

[1]. Aherne, M. R., Barrett, J. T., Hoag, L., Teegarden, E., & Ramadas, R. (2011). Aeneas--Colony I Meets Three-Axis Pointing. In 25th Annual AIAA/USU Conference on Small Satellite, SSC11-XII-7, 1-11.
[2]. Bainbridge, R., & Horton, T. R. (1971). The production of liquid hydrogen at the rocket propulsion establishment. Cryogenics, 11(6), 456-468. https://doi.org/10.1016/0011- 2275(71)90270-0
[3]. Geeroms, D., Bertho, S., De Roeve, M., Lempens, R., Ordies, M., & Prooth, J. (2015, September). ARDUSAT, an Arduino-Based CubeSat Providing Students with the Opportunity to Create their own Satellite Experiment and Collect Real-World Space Data. In 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research (Vol. 730, p. 643-647).
[4]. Georgiadis, N., DalBello, T., Trefny, C., & Johns, A. (2006). Aerodynamic design and analysis of high performance nozzles for Mach 4 accelerator vehicles. In 44th AIAA Aerospace Sciences Meeting and Exhibit (pp 1- 14). https://doi.org/10.2514/6.2006-16
[5]. Haidn, O. J. (2008). Advanced rocket engines. In Advances on Propulsion Technology for High-Speed Aircraft, 1, 6-1, 6-40.
[6]. Haidn, O. J., & Habiballah, M. (2003). Research on high pressure cryogenic combustion. Aerospace Science and Technology, 7(6), 473-491. https://doi.org/10.1016/S1270- 9638(03)00052-X
[7]. Kestilä, A., Tikka, T., Peitso, P., Rantanen, J., Näsilä, A., Nordling, K., ... & Hallikainen, M. (2013). Aalto-1 nanosatellite–technical description and mission objectives. Geoscientific Instrumentation, Methods and Data Systems, 2(1), 121-130. https://doi.org/10.5194/gid-2- 925-2012
[8]. Kim. J. T. (2003). A CubeSat (HAUSAT-1). Mission and system design. (Postgraduate Thesis). Korea Aerospace University.
[9]. Lim, L. S., Bui, T. D. V., Lau, Z., Soon, J. J., Lew, J. M., Aung, H., ... & Chen, S. S. (2015, August). Development and design challenges in VELOX-I nanosatellite. In 2015 International Conference on Space Science and Communication (IconSpace) (pp. 158-163). IEEE.
[10]. Mehrparvar, A., Pignatelli, D., Carnahan, J., Munakata, R., Lan, W., Toorian, A., ... & Lee, S. (2014). CubeSat design specification (CDS) REV 13. The CubeSat Project, San Luis Obispo, CA, 1-42.
[11]. Murphy, T., Kanaber, J., & Koehler, C. (2011). PEZ: expanding CubeSat capabilities through innovative mechanism design. In 25th Annual AIAA/USU Conference on Small Satellite, SSC11-XII-5, 1-4.
[12]. Pohl, S., Jarczyk, M., Pfitzner, M., & Rogg, B. (2013). Real gas CFD simulations of hydrogen/oxygen supercritical combustion. Progress in Propulsion Physics, 4, 583-614. https://doi.org/10.1051/eucass/201304583
[13]. Ribert, G., Zong, N., Yang, V., Pons, L., Darabiha, N., & Candel, S. (2008). Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures. Combustion and Flame, 154(3), 319-330. https://doi.org/10.1016/j.combustflame. 2008.04.023
[14]. Smith, M., Seager, S., Pong, C., Knutson, M., Miller, D., Henderson, T., ... & Murphy, S. (2011). The ExoplanetSat mission to detect transiting exoplanets with a cubesat space telescope. In 25th Annual AIAA/USU Conference on Small Satellite, SSC11-XII-4, 1-9.
[15]. Westbrook, C. K., Mizobuchi, Y., Poinsot, T. J., Smith, P. J., & Warnatz, J. (2005). Computational combustion. Proceedings of the Combustion Institute, 30(1), 125-157. https://doi.org/10.1016/j.proci.2004.08.275
[16]. Young, Q., Burt, R., Watson, M., & Zollinger, L. (2009, August). PEARL CubeSat bus building toward operational missions. In Small Satellites Conference from AIAA/Utah State University, Logan, Utah.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.