References
[1]. Bara'a, A. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950-1957.
[2]. Bong, C. W., & Rajeswari, M. (2011). Multi-objective nature-inspired clustering and classification techniques for image segmentation. Applied Soft Computing, 11(4), 3271-3282.
[3]. Deb, K. (2014). Multi-objective optimization. In Search Methodologies (pp. 403-449). Springer, Boston, MA..
[4]. Fonseca, C. M., & Fleming, P. J. (1995). Multiobjective optimization and multiple constraint handling with evolutionary algorithms 1: A Unified formulation.
[5]. Geem, Z. (2015). Multiobjective optimization of water distribution networks using fuzzy theory and harmony search. Water, 7(7), 3613-3625.
[6]. Geem, Z. W. (2009). Multiobjective optimization of time-cost trade-off using harmony search. Journal of Construction Engineering and Management, 136(6), 711-716.
[7]. Han, L., Wang, W., Zhang, Y., Wang, C., & Qin, C. (2017, November). Non-dominated sorting based multith objective clustering algorithm for WSN. In 2017 9th International Conference on Advanced Infocomm Technology (ICAIT) (pp. 132-137). IEEE.
[8]. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2010, May). A robust harmony search algorithm based clustering protocol for wireless sensor networks. In 2010 IEEE International Conference on Communications Workshops (pp. 1-5). IEEE.
[9]. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2014). Real-time implementation of a harmony search algorithmbased clustering protocol for energy-efficient Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 10(1), 774-783. doi: 10.1109/TII.2013.2273739
[10]. Karimi, M., Naji, H. R., & Golestani, S. (2012, May). Optimizing cluster-head selection in wireless sensor networks using genetic algorithm and harmony search algorithm. In 20th Iranian Conference on Electrical Engineering (ICEE2012) (pp. 706-710). IEEE..
[11]. Kaur, H., & Prabahakar, G. (2016, October). An advanced clustering scheme for wireless sensor networks using particle swarm optimization. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (pp. 387-392). IEEE.
[12]. Khalil, E. A., & Bara'a, A. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195-203.
[13]. Li, M., Wang, C., Wang, W., Qin, C., & Li, X. (2017, November). Multi-objective clustering and routing for th maximizing lifetime of wireless sensor networks. In 2017 9th International Conference on Advanced Infocomm Technology (ICAIT) (pp. 159-164). IEEE.
[14]. Mausser, H. (2006, August). Discussions on normalization and other topics in multi-objective optimization. In Fields-MITACS Industrial Problems Workshop (p. 87).
[15]. Pavelski, L. M., Almeida, C. P., & Goncalves, R. A. (2012, October). Harmony search for multi-objective optimization. In 2012 Brazilian Symposium on Neural Networks (pp. 220-225). IEEE.
[16]. Prasad, D. R., Naganjaneyulu, P. V., & Prasad, K. S. (2017). A hybrid swarm optimization for energy efficient clustering in multi-hop wireless sensor network. Wireless Personal Communications, 94(4), 2459-2471.
[17]. Randhawa, S., & Jain, S. (2019). MLBC: Multi-objective Load Balancing Clustering technique in Wireless Sensor Networks. Applied Soft Computing, 74, 66-89.
[18]. Raval, D., Raval, G., & Valiveti, S. (2016, April). Optimization of clustering process for WSN with hybrid harmony search and K-means algorithm. In 2016 International Conference on Recent Trends in Information Technology (ICRTIT) (pp. 1-6). IEEE.
[19]. Razzaq, M., Kwon, G. R., & Shin, S. (2018, April). Energy efficient Dijkstra-based weighted sum minimization routing protocol for WSN. In 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC) (pp. 246-251). IEEE.
[20]. Ricart, J., Hüttemann, G., Lima, J., & Barán, B. (2011). Multiobjective harmony search algorithm proposals. Electronic Notes in Theoretical Computer Science, 281, 51-67.