References
[1]. Aye, T. T. (2011, March). Web log cleaning for mining of web usage patterns. In 2011 3rd International Conference on Computer Research and Development, 2, 490-494 IEEE. https://doi.org/ 10.1109/ICCRD.2011.5764181
[2]. Belk, M., Papatheocharous, E., Germanakos, P., & Samaras, G. (2013). Modeling users on the World Wide Web based on cognitive factors, navigation behavior and clustering techniques. Journal of Systems and Software, 86(12), 2995-3012. https://doi.org/10.1016/ j.jss.201 3.0 4 .029
[3]. Chen, L., Bhowmick, S. S., & Nejdl, W. (2009). COWES: Web user clustering based on evolutionary web sessions. Data & Knowledge Engineering, 68(10), 867-885. https:// doi.org/10.1016/j.datak.2009.05.002
[4]. Chiang, D., Lee, S. L., Chen, C. C., & Wang., M. H. (2005). Mining interval sequential patterns. International Journal of Intelligent Systems, 20(3), 359-373. https:// do i.org/ 10.1002 /int.20070
[5]. Cooley, R., Mobasher, B., & Srivastava, J. (1997, November). Web mining: Information and pattern discovery on the World Wide Web. In Proceedings 9th IEEE International Conference on Tools with Artificial Intelligence (Vol.97, pp.558-567). https://doi.org/10.1109/TAI.1997.632 303
[6]. Dimopoulos, C., Makris, C., Panagis, Y., Theodoridis, E., & Tsakalidis, A. (2010). A web page usage prediction scheme using sequence indexing and clustering techni ques. Data & Knowledge Engineering, 69(4), 371-382. https://doi.org/10.1016/j.datak.2009.04.010
[7]. Dong, D. (2009, May). Exploration on web usage mining and its application. In 2009 International Workshop on Intelligent Systems and Applications (pp. 1- 4). IEEE. https:// doi.org/- 10.1109/IWISA.2009.5072860
[8]. Dua, S., Cho, E., & Iyengar, S. S. (2000). Discovery of web frequent patterns and user characteristics from web access logs: A framework for dynamic web personalization. In Proceedings 3rd IEEE Symposium on Application- Specific Systems and Software Engineering Technology (pp. 3-8). IEEE. https://doi.org/10.1109/ ASSET.2000.888025
[9]. Fang, G., Wang, J. L., Ying, H., & Xiong, J. (2009, December). A double algorithm of Web usage mining based on sequence number. In 2009 International Conference on Information Engineering and Computer Science (pp. 1-4). IEEE. https:// doi.org/10.1109/ ICIECS.20 09.5363879
[10]. Guerbas, A., Addam, O., Zaarour, O., Nagi, M., Elhajj, A., Ridley, M., & Alhajj, R. (2013). Effective web log mining and online navigational pattern prediction. Knowledge- Based Systems, 49, 50-62. https://doi.org/10.1016/ j.knosys. 2013.04.014
[11]. Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery, 15(1), 55-86. https:// doi.org/10.1007/s10618-006-0059-1
[12]. Han, Q., Gao, X., & Wu, W. (2008, November). Study on web mining algorithm based on usage mining. In 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design (pp. 1121- 1124). IEEE. https:// doi.org/ 10.1109/ CAID CD.2 008 .4730759
[13]. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461. https://doi.org/10.1016/S0031-320 3(02)00060-2
[14]. Liu, B. (2007). Web data mining: Exploring hyperlinks, contents, and usage data. In M.J. carey, & S. ceri (Eds.), Data - centric system and application (2nd Ed.). Springer Science & Business Media.
[15]. NASA. (1995). HTTP requests to the NASA WWW server in Florida. Retrived from http://ita.ee.lbl.gov/html/contrib/ NASA-HTTP.html
[16]. Ou, J. C., Lee, C. H., & Chen, M. S. (2008). Efficient algorithms for incremental web log mining with dynamic thresholds. The VLDB Journal—The International Journal on Very Large Data Bases, 17(4), 827-845. https://doi.org/ 10.1007/s00778-006-0043-9
[17]. Pallis, G., Angelis, L., & Vakali, A. (2007). Validation and interpretation of web users' sessions clusters. Information Processing & Management, 43(5),1348- 1367. https://doi.org/10.1016/j.ipm.2006.10.010
[18]. Pei, J., Dong, G., Zou, W., & Han, J. (2004). Mining condensed frequent-pattern bases. Knowledge and Information Systems, 6(5), 570-594. https://doi.org/ 10.1007/s10115-003-0133-6
[19]. Smith, K. A., & Ng, A. (2003). Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems, 35(2), 245-256. https://doi.org/ 10.1016/ S0167-9236(02)00109-4
[20]. Tseng, A., Petrounias, I., & Chountas, P. (2003, October). A complete framework for Web mining. In 2003 IEEE International Conference on Systems, Man and Cybernetics. (vol. 1, pp. 868-873) IEEE. https://doi.org/10.11 09/ICSMC.2003.1243 924
[21]. Valera, M., & Chauhan, U. (2013, July). An efficient web recommender system based on approach of mining frequent sequential pattern from customized web log preprocessing. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. https://doi.org/ 10.1109/ICCCNT.2013.6726493
[22]. Xing, D., & Shen, J. (2004). Efficient data mining for web navigation patterns. Information and Software Technology, 46(1), 55-63. https://doi.org/ 10.1016/ S0 950-5849(03)00109-5
[23]. Zou, Q., Chu, W., Johnson, D., & Chiu, H. (2002). A pattern decomposition algorithm for data mining of frequent patterns. Knowledge and Information Systems, 4(4), 466-482. https:// doi.org/10.1007/s101150200016