References
[1]. Lazim, M. T., Al-khishali, M. J., & Al-Shawi, A. I. (2011). Space vector modulation direct torque speed control of induction motor. Procedia Computer Science, 5, 505-512. https://doi.org/10.1016/j.procs.2011.07.065
[2]. Nandakumar, V. N., Yadukumar, K., Sureshkumar, T., Ragupathi, S., & Hegde, R. K. (1993, April). A wind driven self-excited induction generator with terminal voltage controller and protection circuits. In Conference Record of the Power Conversion Conference-Yokohama 1993 (pp. 484-489). IEEE. https://doi.org/10.1109/PCCON.1993. 264207
[3]. Ozturk, S. B. (2008). Direct torque control of permanent magnet synchronous motors with non-sinusoidal back- EMF. (Doctoral dissertation), Texas A&M University, USA.
[4]. Busca, C., Stan, A. I., Stanciu, T., & Stroe, D. I. (2010, July). Control of permanent magnet synchronous generator for large wind turbines. In 2010 IEEE International Symposium on Industrial Electronics (pp. 3871-3876). IEEE. https://doi.org/10.1109/ISIE.2010.5637628
[5]. Huang, K., Huang, S., She, F., Luo, B., & Cai, L. (2008, October). A control strategy for direct-drive permanentmagnet wind-power generator using back-to-back PWM converter. In 2008 International Conference on Electrical Machines and Systems (pp. 2283-2288). IEEE.
[6]. Jurado, F., Caño, A., & Ortega, M. (2003). Neural networks and fuzzy logic in electrical engineering control courses. International Journal of Electrical Engineering Education, 40(1), 1-12. https://doi.org/10.7227%2FIJEEE. 40.1.1
[7]. Poorani, S., Priya, T. U., Kumar, K. U., & Renganarayanan, S. (2005). FPGA based fuzzy logic controller for electric vehicle. Journal of the Institution of Engineers, 45(5), 1-14.
[8]. Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21. 256541
[9]. Badoni, M., Singh, A., & Singh, B. (2016). Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM. IEEE Transactions on Industrial Informatics, 12(2), 483-492. https://doi.org/10. 1109/TII.2016.2516823
[10]. Babu, U. R., Reddy, V. V. K., & Kalyani, S. T. (2015). Design of power system stabilizer with Neuro-Fuzzy UPFC controller. World Academy of Science, Engineering and Technology, 8(12), 1945-1948.
[11]. Babu, U. R., Reddy, V. V. K., & Tarakalani, S. (2015). Optimal DSTATCOM placement in radial distribution system using fuzzy-ANFIS. Power Research, 11(2), 305-310. https://doi.org/10.33686/pwj.v11i2.143175
[12]. Menghal, P. M., & Laxmi, A. J. (2013, July). Adaptive Neuro Fuzzy based dynamic simulation of induction motor drives. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-8). IEEE. https://doi.org/10.1109/ FUZZ-IEEE.2013.6622452
[13]. Mohan, S. L., & Bhim, S. (2014). Control strategies for DFIG based grid connected wind energy conversion system, International Journal of Grid Distribution Computing, 7(3), 49-60.