References
[5]. Craig, V. S. J., Ninham, B. W., & Pashley, R. M. (1993). The effect of electrolytes on bubble coalescence in water, Journal of Physical Chemistry, 97, 10192–10197.
[6]. Drozda, T. J., & Wick, C. (1983). Non-traditional machining–book. In Tool and Manufacturing Engineers Handbook. Dearborn, MI: Society of Manufacturing Engineers.
[8]. Fascio, V., Wuthrich, R., Viquerat, D., & Langen, H. (1999). 3D micro structuring of glass using electrochemical discharge machining ECDM, In International Symposium on Micro Mechatronics and Human Science (pp. 179-183).
[12]. Guzzo, P. L., Shinohara, A. H., & Raslan, A. A. (2004). A comparative study on ultrasonic machining of hard and brittle materials. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(1), 56-61.
[13]. Harugade, M. L., & Waigaonkar, S. D. (2018). Effect of Different Electrolytes on Material Removal Rate, Diameter of Hole, and Spark in Electrochemical Discharge Machining. In Advances in Manufacturing (pp. 427-437). Cham: Springer.
[14].
Hossain, A., Nukman, Y., Hassan, M. A., Harizam, M. Z., Sifullah, A. M., & Parandoush, P. A. (2016). Fuzzy Logic- Based Prediction Model for Kerf Width in Laser Beam Machining, Materials and Manufacturing Processes, 31(5), 679-684.
[16]. Jawalkar, C. S., Sharma, A. K., & K, Pradeep. (2012). Micromachining with ECDM: research potentials and experimental investigations, International Journal of Mechanical and Mechatronics Engineering, 6(1), 340- 345.
[17]. Jawalkar, C. S., Sharma, A. K., & Kumar, P. (2014). Investigations on performance of ECDM process using NaOH and NaNO3 electrolytes while micro machining soda lime glass, International Journal Manufacturing Technology and Management, 28(1-3), 80-93.
[18]. Kohls, J.B. (1984). Ultrasonic manufacturing process: ultrasonic machining (USM) and ultrasonic impact grinding (USIG), The Carbide and Tool Journal,16(12), 12- 15.
[20]. Kurafuji, H., & Suda, K. (1968). Electrical discharge drilling of glass, Annals of the CIRP, 16, 415-419.
[21]. Langen, H., Fascio, V., Wuthrich, R., & Viquerat, D. (2002). Three-dimensional structuring of Pyrex glass devices—trajectory control, In Proceedings of the International Conference European Society for Precision Engineering and Nanotechnology (EUSPEN) 2, (Eindhoven) pp. 435-438.
[23]. Li, X., Abe, T., Liu, Y., & Esashi, M. (2002). Fabrication of high-density electrical feed-throughs by deepreactive- ion etching of Pyrex glass. Journal of Microelectromechanical Systems, 11(6), 625-630.
[24]. Maillard, P., Despont, B., Bleuler, H., & Wuthrich, R. (2007). Geometrical characterization of micro-holes drilled in glass by gravity-feed with Spark Assisted Chemical Engraving (SACE), Journal of Micromechanics and Microengineering, 17, 1343-9.
[25]. McGeough, J. A., Khayry, A. B. M., Munro, W., & Crookall, J. R. (1983). Theoretical and experimental investigation of the relative effects of spark erosion & electrochemical dissolution in electrochemical arc machining, Annals of the CIRP, 32(1), 113-118.
[26].
Nikumb, S., Chen, Q., Li, C., Reshef, H., Zheng, H. Y., Qiu, H., & Low, D., (2005). Precision glass machining drilling and profile cutting by short pulse lasers, Thin Solid Films, 477(1-2), 216-21.
[27]. Rajput, V., Goud, M. M., & Suri, N. M. (2019). Experimental investigation to improve the removal rate of material in ECDM process by utilizing different tool electrode shapes, International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES), 5(2), 333–341.
[28]. Sathisha, N., Somashekhar, S. H., Shivakumar, J., & Badiger, R. I. (2013). Parametric optimization of electro chemical spark machining using taguchi based grey relational analysis, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 46-52.
[29]. Somashekhar, S. H., Sadashivappa, K., Vrushabhendrappa, Y., & Singaperumal, M.A. (2000). Modern machining method for cutting micro-profiles on non conducting materials, In Proceedings of the OPTO'2000, Special Session on Innovative Products, Erfurt, Germany (pp. 9-11).
[30].
Tölke, R., Bieberle-Hütter, A., Evans, A., Rupp, J. L. M., & Gauckler, L. J. (2012). Processing of Foturan® glass ceramic substrates for micro-solid oxide fuel cells. Journal of the European Ceramic Society, 32(12), 3229-3238.
[31]. Vogt, H. (1980). Physical processes on gas-evolving electrodes, Chemie Ingenieur Technik, 52, 418.
[32]. Vogt, H. (1999). The anode effect as a fluid dynamic problem. Journal of Applied Electrochemistry, 29(2), 137-145. https://doi.org/10.1023/A:1003477004486
[33]. Wüthrich, R., Fujisaki, K., Couthy, P., Hof, L. A., & Bleuler, H. (2005). Spark assisted chemical engraving (SACE) in microfactory. Journal of Micromechanics and Microengineering, 15(10), 276-280.
[35]. Wüthrich, R., Spaelter, U., Wu, Y., & Bleuler, H. (2006). A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). Journal of Micromechanics and Microengineering, 16(9), 1891-1896.
[36]. Wüthrich, R. (2009). Micromachining using electro chemical discharge phenomenon-fundamentals and application of spark assisted chemical engraving, William Oxford: Andrew Publishing.
[38]. Zheng, Z. P., Cheng, W. H., Huang, F. Y., & Yan, B. H. (2007). 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. Journal of Micromechanics and Microengineering, 17(5), 960-6.
[39]. Zheng, Z.P., Su, H.C., Huang, F.Y., & Yan, B.H. (2007), The tool geometrical shape and pulse- off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process, Journal of Micromechanics and Microengineering, 17(2), 265.