References
[1]. Al-Jabri, K. S., Al-Saidy, A. H., & Taha, R. (2011). Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Construction and Building Materials, 25(2), 933-938. https://doi.org/10. 1016/j.conbuildmat.2010.06.090
[2]. Al-Jabri, K. S., Hisada, M., Al-Oraimi, S. K., & Al-Saidy, A. H. (2009). Copper slag as sand replacement for high performance concrete. Cement and Concrete Composites, 31(7), 483-488. https://doi.org/10.1016/j. cemconcomp.2009.04.007
[3]. Ambily, P. S., Umarani, C., Ravisankar, K., Prem, P. R., Bharatkumar, B. H., & Iyer, N. R. (2015). Studies on ultra high performance concrete incorporating copper slag as fine aggregate. Construction and Building Materials, 77, 233-240. https://doi.org/10.1016/j.conbuildmat. 2014.12.092
[4]. American Concrete Institute. (1992). Guide to Durable Concrete, ACI 201.2R-92. USA: American Concrete Institute.
[5]. BIS. (1963). Methods of Test for Aggregates for Concrete (IS 2386: 1963). New Delhi, India.
[6]. BIS. (1983). Specification for Flow Table for Use in Tests of Hydraulic Cements and Pozzolonic Materials (IS 5512: 1983). New Delhi, India.
[7]. BIS. (1988). Methods of Physical Tests for Hydraulic Cement (IS 4031: 1988 (part-VII)). New Delhi, India.
[8]. BIS. (2012). Specification for Cement Concrete Flooring Tiles, First Revision Appendix- F, Method for Determination of Resistance to Wear (IS1237:2012). New Delhi, India.
[9]. BIS. (2016a). Specification for 43 grade OPC (IS 269: 2016). New Delhi, India.
[10]. BIS. (2016b). Specification for Coarse and Fine Aggregate from Natural Sources for Concrete, Second Revision (IS 383: 2016). New Delhi, India.
[11]. Gorai, B., & Jana, R. K. (2003). Characteristics and utilisation of copper slag-a review. Resources, Conser vation and Recycling, 39(4), 299-313. https://doi.org/10.1016/S0921-3449(02)00171-4
[12]. Mehta. P. K., Paulo. J. M., & Monteiro. (2001). rd Concrete, Microstructure, Properties and Materials (3 Ed). New York: McGraw Hill.
[13]. Nataraja, M. C., Manu A. S., & Girish, G. (2014). Utilization of different types of manufactured sand as fine aggregate in cement mortar. Indian Concrete Journal, 88(1), 19-25.
[14]. Prem, P. R., Verma, M., & Ambily, P. S. (2018). Sustainable cleaner production of concrete with high volume copper slag. Journal of Cleaner Production, 193, 43-58. https://doi.org/10.1016/j.jclepro.2018.04.245
[15]. Rojas, M. I. S. D., Rivera, J., Frías, M., & Marín, F. (2008). Use of recycled copper slag for blended cements. Journal of Chemical Technology & Biotechnology, 83(3), 209-217. https://doi.org/10.1002/ jctb.1830
[16]. Sharma, R., & Khan, R. A. (2017). Durability assessment of self compacting concrete incorporating copper slag as fine aggregates. Construction and Building Materials, 155, 617-629. https://doi.org/ 10.1016/j.conbuildmat.2017.08.074
[17]. Siddique, R. (2003). Effect of fine aggregate replacement with Class F fly ash on the abrasion resistance of concrete. Cement and Concrete Research, 33(11), 1877-1881. https://doi.org/10. 1016/S0008-8846(03)00212-6
[18]. Test Method T279. (2011). For Determining Flow Time and Voids Content of Fine Aggregate by Flow Cone. T279 is a NSW Government Document Based on NZS 3111:1986.