Structural, Optical, Magnetic Properties of CuFe2O4, BaFe2O4 Nano-Particle Synthesized via Hydrothermal Synthesis

U. Naresh*, R. Jeevan Kumar**
*_** Department of Physics, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India.
Periodicity:October - December'2019
DOI : https://doi.org/10.26634/jms.7.3.15753

Abstract

The study of structural, optical, magnetic properties of Copper Ferrite Nanoparticles (CFN), Barium Ferrite Nanoparticles (BFN) prepared through the hydrothermal technique was carried out. The X-Ray Diffraction (XRD) pattern illustrates the formation of a single phase of face-centeredcubic structure for the CFN particles and orthorhombic structure for the BFN particles. Fourier Transform Infrared spectroscopy (FTIR) spectra revealed the confirmation of spinel form by attributing octahedral and tetrahedral bond vibrations at ν1, ν2 wave numbers respectively. UV–Visible spectroscopy technique was employed to determine the energy band gap. Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) images have shown the surface morphology as stone like particle with the agglomeration of nanoparticles, whereas Energy Dispersive X-ray spectrum (EDX) shows synthesized samples elemental evidence accurately as per the calculation. Moreover, the vibrating sample magnetometer measurements represent the particle that exhibits the super paramagnetic nature of hydrothermally synthesized copper ferrite particle.

Keywords

Hydrothermal Method, VSM, BaFe2O4 , CuFe2O4, UV- Visible Spectroscopy

How to Cite this Article?

Naresh, U., and Kumar, R. J. (2019). Structural, Optical, Magnetic Properties of CuFe2O4, BaFe2O4 Nano-Particle Synthesized via Hydrothermal Synthesis. i-manager’s Journal on Material Science, 7(3), 8-15. https://doi.org/10.26634/jms.7.3.15753

References

[1]. Abdellahi, M., Nejad, M. G., Saber-Samandari, S., & Khandan, A. (2017). Study of the effect of the Zn+2 content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1-xZnxFe2O4 ferrite for magnetic hyperthermia. Journal of Australian Ceramic Society, 54(2), 223-230. https://doi.org/10.1007/s41779-017-0144-5
[2]. Anjana, V., John, S., Prakash, P., Nair, A. M., Nair, A. R., Sambhudevan, S., & Shankar, B. (2018, February). Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by Co precipitation method. In IOP Conference Series: Materials Science and Engineering, 310(1), 012024. https://doi.org/10.1088/17 57-899X/310/1/012024 .
[3]. Chen, Z., Wen, X., & Chen, C. (2018). Substratedependent structure, magnetic, and ferroelectric properties of Multiferroic Bi Ba FeO thin film. Journal of 0.9 0.1 3 Superconductivity and Novel Magnetism, 1-7, 2595- 2601. https://doi.org/10.1007/s10948-017-4524-4
[4]. Costa, A. F., Pimentel, P. M., Aquino, F. M., Melo, D. M. A., Melo, M. A. F., & Santos, I. M. G. (2013). Gelatin synthesis of CuFe2O4 and CuFeCrO4 ceramic pigments. Materials Letters, 112, 58-61. https://doi.org/10.1016/j. matlet.2013. 08.044
[5]. Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., & Pankhurst, Q. A. (1999). Self-propagating hightemperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. Journal of Materials Chemistry, 9(10), 2545-2552. https://doi.org/10.1039/A904431K
[6]. Farid, M. T., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Ashiq, M. N., & Khan, S. A. (2017). Magnetic and electric behavior of praseodymium substituted CuPryFe2-yO4 ferrites. Journal of Magnetism and Magnetic Materials, 422, 337-343. https://doi.org/10.1016/j.jmmm.2016.09. 016
[7]. Hashim, M., Raghasudha, M., Shah, J., Shirsath, S. E., Ravinder, D., Kumar, S., ... & Kotnala, R. K. (2018). High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. Journal of Physics and Chemistry of Solids, 112, 29-36. https://doi.org/10.1016/j.jpcs.2017. 08.022
[8]. Kumar, N. S., Suvarna, R. P., & Naidu, K. C. B. (2019). Grain and grain boundary conduction mechanism in solgel synthesized and microwave heated Pb0.8 - yLayCo0.2TiO3 (y= 0.2–0.8) nanofibers. Materials Chemistry and Physics, 223, 241-248. https://doi.org/ 10.1016/j.ceramint.2018.07.027
[9]. Kumar, N. S., Suvarna, R. P., Naidu, K. C. B., Kumar, G. R., & Ramesh, S. (2018). Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2 -zLazTiO3 (z= 0.05–0.2) nanoparticles. Ceramics International, 44(16), 19408-19420. https://doi.org/10. 1016/j.ceramint.2018.07.176
[10]. Lou, Z., He, M., Wang, R., Qin, W., Zhao, D., & Chen, C. (2014). Large-scale synthesis of monodisperse magnesium ferrite via an environmentally friendly molten salt route. Inorganic Chemistry, 53(4), 2053-2057. https://doi.org/10.1021/ic402558t
[11]. Mansour, S. F., Abdo, M. A., & Kzar, F. L. (2018). Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nanoferrites. Journal of Magnetism and Magnetic Materials, 465, 176-185. https://doi.org/ 10.1016/j.jmmm.2018.05.104
[12]. Naidu, K. C. B., & Madhuri, W. (2017). Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties. Materials Chemistry and Physics, 187, 164- 176. https://doi.org/10.1016/j.matchemphys.201 6.11.062
[13]. Naidu, K. C. B., & Wuppulluri, M. (2018). Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC Technologies. IEEE Transactions on Magnetics, 54(9), 1-8. https://doi.org/10.1109/TMAG.2018.2855663
[14]. Naresh, U., Kumar, R. J., & Naidu, K. C. B. (2019). Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8 -xLaxFe2O4 (x= 0.2–0.6) nanoparticles. Ceramics International, 45(6), 7515-7523. https://doi.org/10.1016 /j.ceramint.2019.01.044
[15]. Ramaprasad, T., Kumar, R. J., Naresh, U., Prakash, M., Kothandan, D., & Naidu, K. C. B. (2018). Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Materials Research Express, 5 (9), 095025. https://doi.org/10.10888/2053-1591/aad860
[16]. Shinde, S. R., Kulkarni, S. D., Banpurkar, A. G., Nawathey-Dixit, R., Date, S. K., & Ogale, S. B. (2000). Magnetic properties of nanosized powders of magnetic oxides synthesized by pulsed laser ablation. Journal of Applied Physics, 88(3), 1566-1575. https://doi.org/10.1 063/1.373856
[17]. Singh, A., Singh, A., Singh, S., Tandon, P., & Yadav, R. R. (2016). Synthesis, Characterization and Gas Sensing Capability of NixCu1-xFe2O4 (0.0 aecurrency sign x aecurrency sign 0.8) Nanostructures Prepared via Sol-Gel Method. Journal of Inorganic and Organometallic Polymers and Materials, 26 (6), 1392-1403.https://doi.org/10.1007/s10904-016-0428-1
[18]. Vadivelan, S., & Jaya, N. V. (2016). Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method. Results in Physics, 6, 843-850. https://doi.org/10. 1016/j.rinp.2016.07.013
[19]. Zhang, Y., & Stangle, G. C. (1994). Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. Journal of Materials Research, 9(8), 1997-2004. https://doi.org/10.1557/JMR. 1994.1997

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.