References
[1]. Abdellahi, M., Nejad, M. G., Saber-Samandari, S., & Khandan, A. (2017). Study of the effect of the Zn+2 content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1-xZnxFe2O4 ferrite for magnetic hyperthermia. Journal of Australian Ceramic Society, 54(2), 223-230. https://doi.org/10.1007/s41779-017-0144-5
[2]. Anjana, V., John, S., Prakash, P., Nair, A. M., Nair, A. R., Sambhudevan, S., & Shankar, B. (2018, February). Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by Co precipitation method. In IOP Conference Series: Materials Science and Engineering, 310(1), 012024. https://doi.org/10.1088/17 57-899X/310/1/012024 .
[3]. Chen, Z., Wen, X., & Chen, C. (2018). Substratedependent structure, magnetic, and ferroelectric properties of Multiferroic Bi Ba FeO thin film. Journal of 0.9 0.1 3 Superconductivity and Novel Magnetism, 1-7, 2595- 2601. https://doi.org/10.1007/s10948-017-4524-4
[4]. Costa, A. F., Pimentel, P. M., Aquino, F. M., Melo, D. M. A., Melo, M. A. F., & Santos, I. M. G. (2013). Gelatin synthesis of CuFe2O4 and CuFeCrO4 ceramic pigments. Materials Letters, 112, 58-61. https://doi.org/10.1016/j. matlet.2013. 08.044
[5]. Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., & Pankhurst, Q. A. (1999). Self-propagating hightemperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. Journal of Materials Chemistry, 9(10), 2545-2552. https://doi.org/10.1039/A904431K
[6]. Farid, M. T., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Ashiq, M. N., & Khan, S. A. (2017). Magnetic and electric behavior of praseodymium substituted CuPryFe2-yO4 ferrites. Journal of Magnetism and Magnetic Materials, 422, 337-343. https://doi.org/10.1016/j.jmmm.2016.09. 016
[7]. Hashim, M., Raghasudha, M., Shah, J., Shirsath, S. E., Ravinder, D., Kumar, S., ... & Kotnala, R. K. (2018). High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. Journal of Physics and Chemistry of Solids, 112, 29-36. https://doi.org/10.1016/j.jpcs.2017. 08.022
[8]. Kumar, N. S., Suvarna, R. P., & Naidu, K. C. B. (2019). Grain and grain boundary conduction mechanism in solgel synthesized and microwave heated Pb0.8 - yLayCo0.2TiO3 (y= 0.2–0.8) nanofibers. Materials Chemistry and Physics, 223, 241-248. https://doi.org/ 10.1016/j.ceramint.2018.07.027
[9]. Kumar, N. S., Suvarna, R. P., Naidu, K. C. B., Kumar, G. R., & Ramesh, S. (2018). Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2 -zLazTiO3 (z= 0.05–0.2) nanoparticles. Ceramics International, 44(16), 19408-19420. https://doi.org/10. 1016/j.ceramint.2018.07.176
[10]. Lou, Z., He, M., Wang, R., Qin, W., Zhao, D., & Chen, C. (2014). Large-scale synthesis of monodisperse magnesium ferrite via an environmentally friendly molten salt route. Inorganic Chemistry, 53(4), 2053-2057. https://doi.org/10.1021/ic402558t
[11]. Mansour, S. F., Abdo, M. A., & Kzar, F. L. (2018). Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nanoferrites. Journal of Magnetism and Magnetic Materials, 465, 176-185. https://doi.org/ 10.1016/j.jmmm.2018.05.104
[12]. Naidu, K. C. B., & Madhuri, W. (2017). Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties. Materials Chemistry and Physics, 187, 164- 176. https://doi.org/10.1016/j.matchemphys.201 6.11.062
[13]. Naidu, K. C. B., & Wuppulluri, M. (2018). Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC Technologies. IEEE Transactions on Magnetics, 54(9), 1-8. https://doi.org/10.1109/TMAG.2018.2855663
[14]. Naresh, U., Kumar, R. J., & Naidu, K. C. B. (2019). Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8 -xLaxFe2O4 (x= 0.2–0.6) nanoparticles. Ceramics International, 45(6), 7515-7523. https://doi.org/10.1016 /j.ceramint.2019.01.044
[15]. Ramaprasad, T., Kumar, R. J., Naresh, U., Prakash, M., Kothandan, D., & Naidu, K. C. B. (2018). Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Materials Research Express, 5 (9), 095025. https://doi.org/10.10888/2053-1591/aad860
[16]. Shinde, S. R., Kulkarni, S. D., Banpurkar, A. G., Nawathey-Dixit, R., Date, S. K., & Ogale, S. B. (2000). Magnetic properties of nanosized powders of magnetic oxides synthesized by pulsed laser ablation. Journal of Applied Physics, 88(3), 1566-1575. https://doi.org/10.1 063/1.373856
[17]. Singh, A., Singh, A., Singh, S., Tandon, P., & Yadav, R. R. (2016). Synthesis, Characterization and Gas Sensing Capability of NixCu1-xFe2O4 (0.0 aecurrency sign x aecurrency sign 0.8) Nanostructures Prepared via Sol-Gel Method. Journal of Inorganic and Organometallic Polymers and Materials, 26 (6), 1392-1403.https://doi.org/10.1007/s10904-016-0428-1
[18]. Vadivelan, S., & Jaya, N. V. (2016). Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method. Results in Physics, 6, 843-850. https://doi.org/10. 1016/j.rinp.2016.07.013
[19]. Zhang, Y., & Stangle, G. C. (1994). Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. Journal of Materials Research, 9(8), 1997-2004. https://doi.org/10.1557/JMR. 1994.1997