Alzheimer’s Stage Classification using SVM Classifier using Brain MRI Texture Features

Shaik Basheera*, M. Satya Sai Ram**
* Department of Electronics and Communication Engineering, Acharya Nagarjuna University College of Engineering, Acharya Nagarjuna University, Guntur, India.
**Department of Electronics and Communication Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh, India.
Periodicity:January - March'2019
DOI : https://doi.org/10.26634/jip.6.1.15742

Abstract

This paper deals with the Brain disorder caused due to dementia, where the brain size gets effected and reduces its volume. Estimating the grade of Alzheimer's is a challenging task. Spatial texture information collected from T2 Weighted MRI images are used to perform classification and validation. The authors use 54 Brain MRI Slices, Gray Level Cooccurrence matrix is used to extract the attributes, and those are used to train the classifiers. On comparing Support Vector Machine (SVM) with Naïve Bayes classifier and KNN, SVM gives good classification accuracy of 98.1%. The classifiers classify the MRI into AD, MCI, and CN. Five independent images are collected from the Internet sources, by testing those images using SVM and correlating with clinical data of those images, it achieves 100% accuracy.

Keywords

Support Vector Machines, Gray Level Co-occurrence Matrix, Alzheimer's, Dementia, Naïve Bayes Classifier, KNN.

How to Cite this Article?

Basheera, S., & Ram, M. S. S. (2019). Alzheimer’s Stage Classification using SVM Classifier using Brain MRI Texture Features. i-manager's Journal on Image Processing, 6(1), 9-16. https://doi.org/10.26634/jip.6.1.15742

References

[1]. Ardekani, B. A., Bermudez, E., Mubeen, A. M., & Bachman, A. H. (2017). Prediction of incipient Alzheimer's disease dementia in patients with mild cognitive impairment. Journal of Alzheimer's Disease, 55(1), 269- 281.
[2]. Bobinski, M., Wegiel, J., Wisniewski, H. M., Tarnawski, M., Bobinski, M., Reisberg, B., ... & Miller, D. C. (1996). Neurofibrillary pathology-correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiology of Aging, 17(6), 909-919.
[3]. Brettschneider, S., Morgenthaler, N.G., Teipel, S.J., Fischer-Schulz, C., Bürger, K., Dodel, R., Du, Y., Möller, H.J., Bergmann, A., & Hampel, H., (2005). Decreased serum amyloid β1-42 autoantibody levels in Alzheimer's disease, determined by a newly developed immuno- precipitation assay with radiolabeled amyloid β1-42 peptide. Biol. Psychiatry. 57 (7), 813-816. doi:10.1016/j.biopsych.2004.12.008
[4]. Cedazo-Minguez, A., & Winblad, B. (2010). Biomarkers for Alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects. Experimental Gerontology , 45 (1), 5-14. doi:10.1016/j.exger.2009.09.008
[5]. Dimitriadis, S. I., Liparas, D., & Tsolaki, M. N. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Journal of Neuroscience Methods, 15(302), 14-23.
[6]. Farouk, Y., Rady, S., & Faheem, H. (2018, April). Statistical features and voxel-based morphometry for alzheimer's disease classification. In 2018 9th International Conference on Information and Communication Systems (ICICS) (pp. 133-138). IEEE.
[7]. Frey, H. J., Mattila, K. M., Korolainen, M. A., & Pirttilä, T. (2005). Problems associated with biological markers of Alzheimer's disease. Neurochemical Research, 30(12), 1501-1510. doi:10.1007/s11064-005-8827-7
[8]. Giraldo, D. L., García Arteaga, J. D., Cárdenas Robledo, S., & Romero, E. (2018). Characterization of brain anatomical patterns by comparing region intensity distributions: Applications to the description of Alzheimer's disease. Brain and Behavior, 8(4).
[9]. Henley, S. M., Bates, G. P., & Tabrizi, S. J. (2005). Biomarkers for neurodegenerative diseases. Curr. Opin. Neurol, 18(6), 698-705.
[10]. Hett, K., Ta, V. T., Manjn, J. V., & Coup, P. (2018). Adaptive fusion of texture-based grading for Alzheimer's disease classification. Computerized Medical Imaging and Graphics, 70, 8-16. Retrieved from: https://doi.org/ 10.1016/j.compmedimag.2018.08.002
[11]. Ho, L., Fivecoat, H., Wang, J., & Pasinetti, G. M. (2010). Alzheimer's disease biomarker discovery in symptomatic and asymptomatic patients: Experimental approaches and future clinical applications. Experimental Gerontology, 45(1), 15-22. doi:10.1016/ j.exger.2009.09.007
[12]. Jack, C. R., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O'brien, P. C., ... & Kokmen, E. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58(5), 750- 757.
[13]. Killiany, R. J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., ... & Albert, M. S. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 47(4), 430-439.
[14]. Liu, J., Wang, J., Hu, B., Wu, F. X., & Pan, Y. (2017). Alzheimer's disease classification based on individual hierarchical networks constructed with 3-D texture features. IEEE Transactions on Nanobioscience, 16(6), 428-437.
[15]. Liu, X., Tosun, D., Weiner, M. W., & Schuff, N. (2013). Locally linear embedding (LLE) for MRI based Alzheimer's disease classification. Neuroimage, 83, 148-157.
[16]. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini- Issac, M., Colliot, O., Sarazin, M., ... & Benali, H. (2009). Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73-83.
[17]. Martinez-Murcia, F. J., Górriz, J. M., Ramírez, J., Segovia, F., Salas-Gonzalez, D., & Castillo-Barnes. (2017, July). Evaluating Alzheimer's disease diagnosis using texture analysis. In Annual Conference on Medical Image Understanding and Analysis (pp. 470-481). Springer, Cham.
[18]. MATLAB. The Mathworks; Natick, Massachusetts, USA. Retrieved from https://in.mathworks.com/company/ jobs/locations/us-natick.html
[19]. Sprott, R. L. (2010). Biomarkers of aging and disease: introduction and definitions. Experimental Gerontology, 45(1), 2-4. Retrieved from https://doi.org/10.1016/ j.exger.2009.07.008
[20]. Telagarapu, P., Mohanty, B., & Anandh, K. R. (2018, July). Analysis of Alzheimer Condition in T1-Weighted MR Images Using Texture Features and K-NN Classifier. In 2018 International CET Conference on Control, Communication, and Computing (IC4) (pp. 331-334). IEEE.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.