References
[1]. Ardekani, B. A., Bermudez, E., Mubeen, A. M., & Bachman, A. H. (2017). Prediction of incipient Alzheimer's disease dementia in patients with mild cognitive impairment. Journal of Alzheimer's Disease, 55(1), 269- 281.
[2]. Bobinski, M., Wegiel, J., Wisniewski, H. M., Tarnawski, M., Bobinski, M., Reisberg, B., ... & Miller, D. C. (1996). Neurofibrillary pathology-correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiology of Aging, 17(6), 909-919.
[3]. Brettschneider, S., Morgenthaler, N.G., Teipel, S.J., Fischer-Schulz, C., Bürger, K., Dodel, R., Du, Y., Möller, H.J., Bergmann, A., & Hampel, H., (2005). Decreased serum amyloid β1-42 autoantibody levels in Alzheimer's disease, determined by a newly developed immuno- precipitation assay with radiolabeled amyloid β1-42 peptide. Biol. Psychiatry. 57 (7), 813-816. doi:10.1016/j.biopsych.2004.12.008
[4]. Cedazo-Minguez, A., & Winblad, B. (2010). Biomarkers for Alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects. Experimental Gerontology , 45 (1), 5-14. doi:10.1016/j.exger.2009.09.008
[5]. Dimitriadis, S. I., Liparas, D., & Tsolaki, M. N. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Journal of Neuroscience Methods, 15(302), 14-23.
[6]. Farouk, Y., Rady, S., & Faheem, H. (2018, April). Statistical features and voxel-based morphometry for alzheimer's disease classification. In 2018 9th International Conference on Information and Communication Systems (ICICS) (pp. 133-138). IEEE.
[7]. Frey, H. J., Mattila, K. M., Korolainen, M. A., & Pirttilä, T. (2005). Problems associated with biological markers of Alzheimer's disease. Neurochemical Research, 30(12), 1501-1510. doi:10.1007/s11064-005-8827-7
[8]. Giraldo, D. L., García Arteaga, J. D., Cárdenas Robledo, S., & Romero, E. (2018). Characterization of brain anatomical patterns by comparing region intensity distributions: Applications to the description of Alzheimer's disease. Brain and Behavior, 8(4).
[9]. Henley, S. M., Bates, G. P., & Tabrizi, S. J. (2005). Biomarkers for neurodegenerative diseases. Curr. Opin. Neurol, 18(6), 698-705.
[10]. Hett, K., Ta, V. T., Manjn, J. V., & Coup, P. (2018). Adaptive fusion of texture-based grading for Alzheimer's disease classification. Computerized Medical Imaging and Graphics, 70, 8-16. Retrieved from: https://doi.org/ 10.1016/j.compmedimag.2018.08.002
[11]. Ho, L., Fivecoat, H., Wang, J., & Pasinetti, G. M. (2010). Alzheimer's disease biomarker discovery in symptomatic and asymptomatic patients: Experimental approaches and future clinical applications. Experimental Gerontology, 45(1), 15-22. doi:10.1016/ j.exger.2009.09.007
[12]. Jack, C. R., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O'brien, P. C., ... & Kokmen, E. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58(5), 750- 757.
[13]. Killiany, R. J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., ... & Albert, M. S. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 47(4), 430-439.
[14]. Liu, J., Wang, J., Hu, B., Wu, F. X., & Pan, Y. (2017). Alzheimer's disease classification based on individual hierarchical networks constructed with 3-D texture features. IEEE Transactions on Nanobioscience, 16(6), 428-437.
[15]. Liu, X., Tosun, D., Weiner, M. W., & Schuff, N. (2013). Locally linear embedding (LLE) for MRI based Alzheimer's disease classification. Neuroimage, 83, 148-157.
[16]. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini- Issac, M., Colliot, O., Sarazin, M., ... & Benali, H. (2009). Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73-83.
[17]. Martinez-Murcia, F. J., Górriz, J. M., Ramírez, J., Segovia, F., Salas-Gonzalez, D., & Castillo-Barnes. (2017, July). Evaluating Alzheimer's disease diagnosis using texture analysis. In Annual Conference on Medical Image Understanding and Analysis (pp. 470-481). Springer, Cham.
[18]. MATLAB. The Mathworks; Natick, Massachusetts, USA. Retrieved from https://in.mathworks.com/company/ jobs/locations/us-natick.html
[19]. Sprott, R. L. (2010). Biomarkers of aging and disease: introduction and definitions. Experimental Gerontology, 45(1), 2-4. Retrieved from https://doi.org/10.1016/ j.exger.2009.07.008
[20]. Telagarapu, P., Mohanty, B., & Anandh, K. R. (2018, July). Analysis of Alzheimer Condition in T1-Weighted MR Images Using Texture Features and K-NN Classifier. In 2018 International CET Conference on Control, Communication, and Computing (IC4) (pp. 331-334). IEEE.