References
[1]. Torres-Huitzil, C., Girau, B., and Gauffriau, A., (2007).
Hardware/Software Co-design for Embedded
Implementation of Neural Networks. Reconfigurable
computing: architectures, tools and applications-
Lecture notes in computer science, 4419, 167-178.
[2]. Cantrell, C., and Wurtz, L., (1993). A Parallel Bus
Architecture for artificial neural networks.Southeastcon'93
Proceedings, IEEE(pp.5).doi:
10.1109/SECON.1993.465674.
[3]. Baker, T., and Hammerstrom, D., (1989).
Characterization of Artificial Neural Network Algorithms.
Circuits and Systems- IEEE International Symposium, Vol.1,
78-81. doi: 10.1109/ISCAS.1989.100296.
[4]. Blais, A., and Mertz, D., (2001, July). An Introduction to
Neural Networks – Pattern Learning with Back
Propagation Algorithm. Retrieved from
http://www.ibm.com/developerworks/library/l-neural/.
[5]. Vargas, P. Lorena, Barba, L., Torres, C. O., and Mattos,
L., (2011). Sign Language Recognition System using
Neural Network for Digital Hardware Implementation.
Journal of Physics: Conference Series, 274(1). doi:
1088/1742-6596/374/1/012051.
[6]. Ali, H. K., and Mohammed, E. Z., (2010, August).
Design Artificial Neural Network using FPGA. International
journal of computer science and network security, 10(8),
88-92.
[7]. Omondi, R. Amos, and Rajapakse, Jagath C., (2006,
July). FPGA Implementations of Neural Networks.
Springer.
[8]. Izeboudjen, N., Farah, A., Bessalah, H., Bouridane, A.,
and Chikhi, N., (2008, July). High Level Design Approach
for FPGA Implementation of ANNs. Encyclopedia of
Artificial Intelligence, IGI-Global Publishers. doi:
10.4018/978-1-599-4-849-9.
[9]. Berry, D. L., (2002). VHDL programming by examples.
McGraw-Hill, fourth edition.
[10]. Schemmel, J., Meier, K. and Schurmann, F., (2001, October). A VLSI Implementation of an Analog Neural
Network suitable for Genetic Algorithms. ICES '01
Proceedings of the 4th International Conference on
Evolvable Systems: From Biology to Hardware. Springer-
Verlag London, 50-61.
[11]. Short, Kenneth L., (2009). VHDL for Engineer. NJ:
Pearson Prentice Hall.
[12]. Ashenden, Peter J., (1995). San Francisco: Morgan
Kaufmann publishers.
[13]. Mekala, P., Erdogan, S. and Fan, J., (2010,
November). Automatic object recognition using
combinational neural networks in surveillance networks.
IEEE 3rd International Conference on Computer and
Electrical Engineering (ICCEE'10), Chengdu, China, Vol.
8, pp. 387-391.
[14]. Mehrotra, K., Chilukuri, K.M., and Ranka, S., (1997).
Elements of Artificial Neural Networks, The MIT Press, pp1-
2.
[15]. Caudill, M., Butler, C., (1992). Understanding neural
networks: Computer explorations, MIT press.
[16]. Stergiou, C., and Siganos, D., (1996). Report: Neural
Networks. Vol 14.Retrieved from
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs
11/report.html.
[17]. Dreyfus, G., (2005). Neural networks: methodology
and applications. Berlin, New York: Springer.
[18]. Kwan, H.K., (1992, July). Simple sigmoid like
activation function suitable for digital hardware
implementation. Electronic Letters, 28(15), 1379-1380.
doi: 10.1049/EL: 19920877.
[19]. Fausett, L., (1994). Fundamentals of Neural Networks
– architecture, algorithms and applications. Prentice Hall.
[20]. Mekala, P., Gao, Y., Fan, J., and Davari, A., (2011,
March). Real-time sign language recognition based on
neural network architecture. Joint IEEE International
Conference on Industrial Technology & 43rd
Southeastern Symposium on System Theory (SSST'11),
Auburn, AL, pp. 197-201.
[21]. Xilinx (2009). XST User Guide, Xilinx Inc. Retrieved from
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/xst.pdf.
[22]. Tommiska, M.T., (2003, November). Efficient digital
implementation of the sigmoid function for reprogrammable logic. IEEE proceedings, Computer
Digital Techniques, 150(6). doi: 10.1049/ip-cdt:
20030965.