References
[1]. Abachizadeh, M., Yazdi, M. R. H., & Yousefi-Koma, A. (2010). Optimal tuning of PID controllers using Artificial Bee Colony algorithm. In Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on (pp. 379-384). IEEE.
[2]. Adebiyi, B. H. (2017). Development of Cultural Algorithm Based Artificial Bee Colony for Improved Proportional Integral Derivative Parameter Tuning (M.Sc Dissertation. Ahmadu Bello University Zaria).
[3]. Adebiyi, B. H., Tekanyi, A. M. S., & Salawudeen, T. A. (2017). An Improved Artificial Bee Colony using Cultural Algorithm for optimization problem. International Journal of Computer Applications, 160(8). 14-18.
[4]. Akay, B., & Karaboga, D. (2012). Artificial Bee Colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001-1014.
[5]. Alobaidi, A. T. S., & Hussein, S. A. (2017). An improved Artificial Fish Swarm Algorithm to solve flexible job shop. In New Trends in Information & Communications Technology Applications (NTICT), 2017 Annual Conference on (pp. 7-12). IEEE.
[6]. Baba, Y., Ugweje, O. C., & Koyunlu, G. (2017). Development and analysis of a modified Artificial Fish Swarm Algorithm. In Electronics, Computer and Computation (ICECCO), 2017 13th International Conference on (pp. 1-6). IEEE.
[7]. Binitha, S., & Sathya, S. S. (2012). A survey of bio inspired optimization algorithms. International Journal of Soft Computing and Engineering, 2(2), 137-151.
[8]. Chen, L., & Zhao, X. (2016). An improved power control AFSA for minimum interference to primary users in cognitive radio networks. Wireless Personal Communications, 87(1), 293-311.
[9]. Cheng, Z., & Hong, X. (2012). PID controller parameters optimization based on artificial fish swarm algorithm. In Intelligent Computation Technology and Automation (ICICTA), 2012 Fifth International Conference on (pp. 265-268). IEEE.
[10]. Dorigo, M., & Socha, K. (2006). An introduction to Ant Colony Optimization. Handbook of Approximation Algorithms and Metaheuristics, 26-1.
[11]. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.
[12]. El-Telbany, M. E. (2013). Tuning PID controller for DC motor: An artificial bees optimization approach. International Journal of Computer Applications, 77(15).
[13]. Kaliappan, V., & Thathan, M. (2015). Enhanced ABC based PID controller for nonlinear control systems. Indian Journal of Science and Technology, 8, 48-56.
[14]. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200). Technical report-tr06 (pp. 1-10). Erciyes University, Engineering Faculty, Department of Computer Engineering.
[15]. Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132.
[16]. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
[17]. Karaboga, D., & Basturk, B. (2008). On the performance of Artificial Bee Colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697.
[18]. Li, X. L. (2002). An optimizing method based on autonomous animats: Fish-swarm algorithm. Systems Engineering-Theory & Practice, 22(11), 32-38.
[19]. Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2014). Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), 965-997.
[20]. Reynolds, R. G. (1994). An introduction to cultural algorithms. In Proceedings of the Third Annual Conference on Evolutionary Programming (pp. 131-139). River Edge, NJ: World Scientific.
[21]. Reynolds, R. G., & Peng, B. (2004). Cultural algorithms: Modeling of how cultures learn to solve problems. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on (pp. 166- 172). IEEE.
[22]. Reynolds, R. G., & Peng, B. (2005). Cultural algorithms: computational modeling of how cultures learn to solve problems: An engineering example. Cybernetics and Systems: An International Journal, 36(8), 753-771.
[23]. Salawudeen, A. T. (2015). Development of an Improved Cultural Artificial Fish Swarm Algorithm with Crossover. Department of Electrical and Computer Engineering, Ahmadu Bello University, Zaria, Nigeria,154.
[24]. Salawudeen, A. T., Abdulrahman, A. O., Sadiq, B. O., & Mukhtar, Z. A. (2016). An optimized Wireless Sensor Network Deployment using weighted Artificial Fish Swarm (wAFSA) Optimization Algorithm. International Conference on Information and Communication Technology and its Applications, 203-207.
[25]. Shapla, S. S., Haque, H. M., & Alam, M. S. (2015). Explorative Artificial Bee Colony algorithm: A novel Swarm Intelligence based Algorithm for continuous function optimization. International Journal of Science and Research (IJSR), 4(7), 1339-1344.
[26]. Tijani, S. A., & Mua'zu, M. B. (2015). Stabilization of inverted pendulum system using intelligent Linear Quadratic Regulator controller. In Computational Intelligence (IJCCI), 2015 7th International Joint Conference on (Vol. 1, pp. 325-333). IEEE.
[27]. Varma, P., & Kumar, B. A. (2013). Control of DC motor using Artificial Bee Colony based PID controller. Int. J. Digital Appl. Contemp. Res., 2, 1-9.
[28]. Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms (pp. 169-178). Springer, Berlin, Heidelberg.
[29]. Yazdani, D., Sepas-Moghaddam, A., Dehban, A., & Horta, N. (2016). A novel approach for optimization in dynamic environments based on modified artificial fish swarm algorithm. International Journal of Computational Intelligence and Applications, 15(02), 1650010.
[30]. Yu, L., & Li, C. (2014). A global artificial fish swarm algorithm for structural damage detection. Advances in Structural Engineering, 17(3), 331-346.