References
[1]. Ahmed, H., Razzaq, M. A., & Qamar, A. M. (2013, December). Prediction of popular tweets using Similarity Learning. In Emerging Technologies (ICET), 2013 IEEE 9th International Conference on (pp. 1-6). IEEE.
[2]. Alabbas, W., al-Khateeb, H. M., Mansour, A., Epiphaniou, G., & Frommholz, I. (2017, June). Classification of colloquial Arabic tweets in real-time to detect high-risk floods. In Social Media, Wearable and Web Analytics (Social Media), 2017 International Conference on (pp. 1-8). IEEE.
[3]. Aphinyanaphongs, Y., Ray, B., Statnikov, A., & Krebs, P. (2014, August). Text classification for automatic detection of alcohol use-related tweets: A feasibility study. In Information Reuse and Integration (IRI), 2014 IEEE 15th International Conference on (pp. 93-97). IEEE.
[4]. Deep Learning Tutorial (2015). LISA lab, University of Montreal.
[5]. Dey, R., & Salemt, F. M. (2017, August). Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Circuits and Systems (MWSCAS), 2017 IEEE 60th International Midwest Symposium on (pp. 1597-1600). IEEE.
[6]. Lee, H. S., Lee, H. R., Park, J. U., & Han, Y. S. (2018). An abusive text detection system based on enhanced abusive and non-abusive word lists. Decision Support Systems, 113, 22-31.
[7]. Lundeqvist, E., & Svensson, M. (2017). Author profiling: A machine learning approach towards detecting gender, age and native language of users in social media. UPPSALA University, Department of Information Technology.
[8]. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[9]. O'Dea, B., Wan, S., Batterham, P. J., Calear, A. L., Paris, C., & Christensen, H. (2015). Detecting suicidality on Twitter. Internet Interventions, 2(2), 183-188.
[10]. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532-1543).
[11]. Semberecki, P. & Maciejewski, H. (2017). Deep learning methods for text classification of articles FedCSIC. ACSIS, 11, 357-360, Doi: 10.15439/2017F414.
[12]. Sureka, A., & Agarwal, S. (2014, September). Learning to classify hate and extremism promoting tweets. In Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint (pp. 320-320). IEEE.
[13]. Tsapatsoulis, N., & Djouvas, C. (2017, July). Feature extraction for tweet classification: Do the humans perform better? In Semantic and Social Media Adaptation and Personalization (SMAP), 2017 12th International Workshop on (pp. 53-58). IEEE.
[14]. Twitter. (n.d). Retrieved from https://about.twitter.com/ company on February 6, 2018.
[15]. Twitter Streaming APIs. (n.d). Retrieved from https://dev.twitter.com/streaming/overview on January 3, 2018.
[16]. Uysal, A. K., & Murphey, Y. L. (2017, August). Sentiment classification: Feature selection based approaches versus deep learning. In Computer and Information Technology (CIT), 2017 IEEE International Conference on (pp. 23-30). IEEE.
[17]. Wan, Y., & Gao, Q. (2015, November). An ensemble sentiment classification system of twitter data for airline services analysis. In Data Mining Workshop (ICDMW), 2015 IEEE International Conference on (pp. 1318-1325). IEEE.
[18]. Wikarsa, L., & Thahir, S. N. (2015, November). A text mining application of emotion classifications of Twitter's users using Naïve Bayes method. In Wireless and Telematics (ICWT), 2015 1st International Conference on (pp. 1-6). IEEE.
[19]. Xianghui, Z., Yuangang, Y., Xiaoyi, W., & Zhan, Z. (2015, December). A classification method to detect if a Tweet will be popular in a very early stage. In Computing, Communication and Security (ICCCS), 2015 International Conference on (pp. 1-5). IEEE.
[20]. Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from social media data. Transportation Research Part C: Emerging Technologies, 86, 580-596.