Enhanced Query Expansion Algorithm: Framework for Effective Ontology Based Information Retrieval System

Enesi Femi Aminu*, Ishaq Oyebisi Oyefolahan**, Muhammad Bashir Abdullahi***, Muhammadu Tajudeen Salaudeen****
* Lecturer,Department of Computer Science, Federal University of Technology, Minna, Nigeria.
** Senior Lecturer,Department of Information and Media Technology, Federal University of Technology, Minna, Nigeria.
*** Head,Department of Computer Science, Federal University of Technology, Minna, Nigeria.
**** Senior Lecturer,Department of Crop Production, Federal University of Technology, Minna, Nigeria.
Periodicity:December - February'2019
DOI : https://doi.org/10.26634/jcom.6.4.15721

Abstract

The strength of an Information Retrieval System lies on its ability to retrieve relevant information or documents according to user's intent by considering a high level of precision and a low level of irrelevant recall of results. A recent development to actualize this dream is the application of ontology. Therefore, Ontology-Based Information Retrieval is becoming an interesting area in the current research trend of ontology and semantic web. However, the sufficiency of developing domain ontology alone to efficiently and effectively take care of information retrieval becomes a research issue. Thus, to address the research gap, a technique called Query Expansion has been identified as a veritable tool. Query Expansion is a process of expanding initial user's query term(s) with the aid of a technology such as wordNet to return relevant results according to user's intent. But returns of query results using the existing wordNet is challenging in normal or inflected terms, such as synonyms or polysemy (word mismatch). Therefore, this paper proposes improved query expansion algorithm as framework to effectively and efficiently develop ontology based information retrieval system.

Keywords

Semantic web, Ontology, WordNet, WordWeb, Senses, Polysemy and Levenshtein

How to Cite this Article?

Aminu,E.F., Oyefolahan,I.O., Abdullahi,M.B., Salaudeen,M.T.(2019) Enhanced Query Expansion Algorithm: Framework for Effective Ontology Based Information Retrieval System,i-manager's Journal on Computer Science, 6(4),1-11. https://doi.org/10.26634/jcom.6.4.15721

References

[1]. Akmal, S., Shih, L. H., & Batres, R. (2014). Ontology-based similarity for product information retrieval. Computers in Industry, 65(1), 91-107.
[2]. Alfred, R., Chin, K. O., Anthony, P., San, P. W., Im, T. L., Leong, L. C., & Soon, G. K. (2014). Ontology-based query expansion for supporting information retrieval in agriculture. In The 8th International Conference on Knowledge Management in Organizations (pp. 299-311). Springer.
[3]. Bhogal, J., MacFarlane, A., & Smith, P. (2007). A review of ontology based query expansion. Information Processing & Management, 43(4), 866-886.
[4]. Bhogal, J., & Macfarlane, A. (2013, October). Ontology based query expansion with a probabilistic retrieval model. In Information Retrieval Facility Conference (pp. 5-16). Springer.
[5]. Bonacin, R., Nabuco, O. F., & Junior, I. P. (2016). Ontology models of the impacts of agriculture and climate changes on water resources: Scenarios on interoperability and information recover y. Future Generation Computer Systems, 54, 423-434.
[6]. Chauhan, R., Goudar, R., Sharma, R., & Chauhan, A. (2013, March). Domain ontology based semantic search for efficient information retrieval through automatic query expansion. In Intelligent Systems and Signal Processing (ISSP), 2013 International Conference on (pp. 397-402). IEEE.
[7]. Colace, F., De Santo, M., Greco, L., & Napoletano, P. (2015). Weighted word pairs for query expansion. Information Processing & Management, 51(1), 179-193.
[8]. de Boer, M., Schutte, K., & Kraaij, W. (2016). Knowledge based quer y expansion in complex multimedia event detection. Multimedia Tools and Application, 75(15),9025-9043.
[9]. Devi, M. U., & Gandhi, G. M. (2014). WordNet and ontology based quer y expansion for semantic information retrieval in Sports domain. Journal on Computer Science.
[10]. Ekuobase, G. O., & Ebietomere, E. P. (2016, May). Ontology for alleviating poverty among farmers in Nigeria. In Proceedings of the 10th International Conference on Informatics and Systems (pp. 28-34). ACM.
[11]. Fontes, C. A., Cavalcanti, M. C., & Moura, A. M. D. C. (2013, September). An ontology-based reasoning approach for document annotation. In Semantic Computing (ICSC), 2013 IEEE Seventh International Conference on (pp. 160-167). IEEE.
[12]. Haav, H. M., & Lubi, T. L. (2001, September). A survey of concept-based information retrieval tools on the web. In Proceedings of the 5th East-European Conference ADBIS (Vol. 2, pp. 29-41).
[13]. Jain, V., & Singh, M. (2013). Ontology based information retrieval in semantic web: A survey. International Journal of Information Technology and Computer Science (IJITCS), 5(10), 62.
[14]. James, N. T., & Kannan, R. (2017). A survey on information retrieval models, techniques and applications. International Journals of Advanced Research in Computer Science and Software Engineering, 7(7), 16-19.
[15]. Jimeno-Yepes, A., Berlanga-Llavori, R., & Rebholz- Schuhmann, D. (2010). Ontology refinement for improved information retrieval. Information Processing & Management, 46(4), 426-435.
[16]. Kallipolitis, L., Karpis, V., & Karali, I. (2007, February). World news finder: How we cope without the semantic web. In Proceedings of the 25th Conference on IASTED International Multi-Conference: Artificial Intelligence and Applications (pp. 616-621). ACTA Press.
[17]. Kara, S., Alan, Ö., Sabuncu, O., Akpınar, S., Cicekli, N. K., & Alpaslan, F. N. (2012). An ontology-based retrieval system using semantic indexing. Information Systems, 37(4), 294-305.
[18]. Liao, J., Li, L., & Liu, X. (2015). An integrated, ontology-based agricultural information system. Information Development, 31(2), 150-163.
[19]. Li, Z., Raskin, V., & Ramani, K. (2007). A methodology of engineering ontology development for information retrieval. In Proceedings of the 16th International Conference on Engineering Design (ICED'07).
[20]. Lu, M., Sun, X., Wang, S., Lo, D., & Duan, Y. (2015, March). Query expansion via WordNet for effective code search. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International Conference on (pp. 545-549). IEEE.
[21]. Ma, S., & Tian, L. (2015). Ontology-based semantic retrieval for mechanical design knowledge. International Journal of Computer Integrated Manufacturing, 28(2), 226-238.
[22]. Magdy, W., & Jones, G. J. (2011, October). A study on query expansion methods for patent retrieval. In Proceedings of the 4th Workshop on Patent Information Retrieval (pp. 19-24). ACM.
[23]. Oyefolahan, I. O., Aminu, E. F., Abdullahi, M. B., & Salaudeen, M. T.. A. (2018). Review of ontology-based information retrieval techniques on generic domains. International Journal of Applied Information Systems (IJAIS), 12(13), 8-21.
[24]. Pal, D., Mitra, M., & Datta, K. (2014). Improving query expansion using WordNet. Journal of the Association for Information Science and Technology, 65(12), 2469-2478.
[25]. Phonarin, P., Nitsuwat, S., & Haruechaiyasak, C. (2012). AGRIX: An ontology based agricultural expertise retrieval framework. In Advanced Materials Research (Vol. 403, pp. 3714-3718). Trans Tech Publications.
[26]. Pokharel, S., Sherif, M. A., & Lehmann, J. (2014, August). Ontology based data access and integration for improving the effectiveness of farming in Nepal. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) (Vol. 2, pp. 319-326). IEEE Computer Society.
[27]. Qi, H., Zhang, L., & Gao, Y. (2010, August). Semantic retrieval system based on corn ontology. In Frontier of Computer Science and Technology (FCST), 2010 Fifth International Conference on (pp. 116-121). IEEE.
[28]. Ranwez, S., Duthil, B., Sy, M. F., Montmain, J., Augereau, P., & Ranwez, V. (2013). How ontology based information retrieval systems may benefit from lexical text analysis. In New Trends of Research in Ontologies and Lexical Resources (pp. 209-231). Springer, Berlin, Heidelberg.
[29]. Ruban, S, Tendolkar. K, Rodrigues, A. P, & Shetty, N, (2014). An ontology-based information retrieval model for domesticated plants. International Journal of Innovative Research in Computer and Communication Engineering, 2(5).
[30]. Sodanil, M., Phonarin, P., & Porrawatpreyakorn, N. (2013, December). An ontology-based query expansion for an agricultural expert retrieval system. In Proceedings of International Conference on Information Integration and Web-based Applications & Services (p. 358). ACM.
[31]. Thangaraj, M., & Sujatha, G. (2014). An architectural design for effective information retrieval in semantic web. Expert Systems with Applications, 41(18), 8225-8233.
[32]. Thunkijjanukij, A., Kawtrakul, A., Panichsakpatana, S., & Veesommai, U. (2009). Ontology development: A case study for Thai rice. Kasetsart J. (Nat. Sci.), 43(3), 594- 604.
[33]. Tulasi, R. L., Rao, M. S., Ankita, K., & Hgoudar, R. (2017). Ontology-based automatic annotation: an approach for efficient retrieval of semantic results of web documents. In Proceedings of the First International Conference on Computational Intelligence and Informatics (pp. 331-339). Springer.
[34]. Uthayan, K. R., & Mala, G. S. A. (2015). Hybrid ontology for semantic information retrieval model using keyword matching indexing system. The Scientific World Journal, 2015.
[35]. Vijayarajan, V., Dinakaran, M., Tejaswin, P., & Lohani, M. (2016). A generic framework for ontology-based information retrieval and image retrieval in web data. Human-centric Computing and Information Sciences, 6(1), 18.
[36]. Wei, C. P., Hu, P. J. H., Tai, C. H., Huang, C. N., & Yang, C. S. (2007). Managing word mismatch problems in information retrieval: A topic-based query expansion approach. Journal of Management Information Systems, 24(3), 269-295.
[37]. Wu, J., Ilyas, I., & Weddell, G. (2011). A study of ontology-based query expansion. Technical Report CS- 2011-04.
[38]. Xinhua, L., & Xutang, Z. (2012). A domain ontology-based Information retrieval approach for technique preparation. Physics Procedia, 25, 1582-1588.
[39]. Xu, J., & Croft, W. B. (2000). Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems (TOIS), 18(1), 79-112.
[40]. Zhang, X., Hou, X., Chen, X., & Zhuang, T. (2013). Ontology-based semantic retrieval for engineering domain knowledge. Neurocomputing, 116, 382-391.
[41]. Zidi, A., & Abed, M. (2013, May). A generalized framework for ontology-based information retrieval: Application to a public-transportation system. In Advanced Logistics and Transport (ICALT), 2013 International Conference on (pp. 165-169). IEEE.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.