References
[1]. Anitha, B., Ravidhas, C., Venkatesh, R., Raj, A. M. E., Ravichandran, K., Subramanian, B., & Sanjeeviraja, C. (2017). Self assembled sulfur induced interconnected nanostructure TiO2 electrode for visible light photoresponse and photocatalytic application. Physica E: Low-dimensional Systems and Nanostructures, 91, 148- 160.
[2]. Arunachalam, A., Dhanapandian, S., Manoharan, C., & Sridhar, R. (2015). Characterization of sprayed TiO2 on ITO substrates for solar cell applications. Spectrochimica Acta Par t A : Molecular and Biomolecular Spectroscopy, 149, 904-912.
[3]. Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., & Lee, W. I. (2003). Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chemistry of Materials, 15(17), 3326-3331.
[4]. Chen, Y., Gao, H., Xiang, J., Dong, X., & Cao, Y. (2018). Enhanced photocatalytic activities of TiO2 - reduced graphene oxide nanocomposites controlled by TiOC interfacial chemical bond. Materials Research Bulletin, 99, 29-36.
[5]. Cui, Y., Sun, J., Hu, Z., Yu, W., Xu, N., Xu, N., ... & Wu, J. (2013). Synthesis, phase transition and optical properties of nanocrystalline titanium dioxide films deposited by plasma assisted reactive pulsed laser deposition. Surface and Coatings Technology, 231, 180-184.
[6]. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
[7]. Hu, B., & Liu, B. (2015). Dye-sensitized solar cells fabricated by the TiO2 nanostructural materials synthesized by electrospray and hydrothermal posttreatment. Applied Surface Science, 358, 412-417.
[8]. Jin, P., Miao, L., Tanemura, S., Xu, G., Tazawa, M., & Yoshimura, K. (2003). Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Applied Surface Science, 212, 775-781.
[9]. Kim, D. S., Han, S. J., & Kwak, S. Y. (2007). Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 316(1), 85-91.
[10]. Komaraiah, D., Madhukar, P., Vijayakumar, Y., Reddy, M. R., & Sayanna, R. (2016). Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Materials Today: Proceedings, 3(10), 3770-3778.
[11]. Komaraiah, D., Poloju, M., Vijayakumar, Y., Reddy, M. V. R., & Sayanna, R. (2015). Structural and optical properties of nanostructured TiO2 thin films prepared by sol-gel spin coating technique. International Journal of Engineering Research - online (IJOER), 3, 176-182.
[12]. Le Boulbar, E., Millon, E., Boulmer-Leborgne, C., Cachoncinlle, C., Hakim, B., & Ntsoenzok, E. (2014). Optical properties of rare earth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films, 553, 13-16.
[13]. Lee, W. J., Lee, J. M., Kochuveedu, S. T., Han, T. H., Jeong, H. Y., Park, M., ... & Kim, S. O. (2011). Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano, 6(1), 935-943.
[14]. Li, D., Carette, M., Granier, A., Landesman, J. P., & Goullet, A. (2013). In situ spectroscopic ellipsometry study of TiO2 films deposited by plasma enhanced chemical vapour deposition. Applied Surface Science, 283, 234- 239.
[15]. Liu, J., Han, L., An, N., Xing, L., Ma, H., Cheng, L., ... & Zhang, Q. (2017). Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental, 202, 642-652.
[16]. Lu, J., Wang, H., Peng, D., Chen, T., Dong, S., & Chang, Y. (2016). Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Physica E: Lowdimensional Systems and Nanostructures, 78, 41-48.
[17]. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment, 43(14), 2229-2246.
[18]. Mohanty, P., Kabiraj, D., Mandal, R. K., Kulriya, P. K., Sinha, A. S. K., & Rath, C. (2014). Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique. Journal of Magnetism and Magnetic Materials, 355, 240-245.
[19]. More, A. M., Gunjakar, J. L., & Lokhande, C. D. (2008). Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 129(2), 671-677.
[20]. Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111.
[21]. Nandiyanto, A. B. D., Zaen, R., & Oktiani, R. (2017). Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.10.010
[22]. Pérez, J. B., Courel, M., Pal, M., Delgado, F. P., & Mathews, N. R. (2017). Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceramics International, 43(17), 15777-15784.
[23]. Radha, E., Komaraiah, D., Reddy, M. R., Sayanna, R., & Sivakumar, J. (2018). Structural, Optical and Photocatalytic Properties of Anatase/ Rutile TiO2 Nanoparticles. i-manager's Journal on Material Science, 6(3), 43-49.
[24]. Shang, H., Han, D., Ma, M., Li, S., Xue, W., & Zhang, A. (2017). Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. Journal of Photochemistry and Photobiology B: Biology, 177, 112- 123.
[25]. Soltani, N., Saion, E., Hussein, M. Z., Erfani, M., Abedini, A., Bahmanrokh, G., ... & Vaziri, P. (2012). Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. International Journal of Molecular Sciences, 13(10), 12242-12258.
[26]. Stefan, M., Leostean, C., Pana, O., Toloman, D., Popa, A., Perhaita, I., ... & Barbu-Tudoran, L. (2016). Magnetic recoverable Fe3O4 -TiO2 : Eu composite nanoparticles with enhanced photocatalytic activity. Applied Surface Science, 390, 248-259.
[27]. Stroyuk, A. L., Kryukov, A. I., Kuchmii, S. Y., & Pokhodenko, V. D. (2005). Quantum size effects in semiconductor photocatalysis. Theoretical and Experimental Chemistry, 41(4), 207-228.
[28]. Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16(12), 1214.
[29]. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., & Xu, Y. (2015). Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 36(12), 2049-2070.
[30]. Wojcieszak, D. (2017). Analysis of Eu-effect on stabilization of the TiO2-anatase structure in high temperature and photoluminescence efficiency for the coatings as-deposited in magnetron sputtering process. Applied Surface Science, 421, 128-133.
[31]. Wojcieszak, D., Mazur, M., Gibson, D., Zatryb, G., Kaczmarek, D., &Misiewicz, J. (2017). Influence of europium on structure modification of TiO thin films 2 prepared by high energy magnetron sputtering process. Surface & Coatings Technology, 320, 132-137.
[32]. Wu, C. Y., Lee, Y. L., Lo, Y. S., Lin, C. J., & Wu, C. H. (2013). Thickness-dependent photocatalytic performance of nanocrystalline TiO thin films prepared 2 by sol-gel spin coating. Applied Surface Science, 280, 737-744.
[33]. Wu, D., Yi, M., Duan, H., Xu, J., & Wang, Q. (2016). Tough TiO -rGO-PDMAA nanocomposite hydrogel via 2 one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon, 108, 394- 403.
[34]. Ye, Y., Feng, Y., Bruning, H., Yntema, D., & Rijnaarts, H. H. M. (2018). Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Applied Catalysis B: Environmental, 220, 171-181.
[35]. Zaleta-Alejandre, E., Zapata-Torres, M., García- Hipólito, M., Aguilar-Frutis, M., Alarcon-Flores, G., Guzman-Mendoza, J., & Falcony, C. (2009). Structural and luminescent properties of europium doped TiO2 thick films synthesized by the ultrasonic spray pyrolysis technique. Journal of Physics D: Applied Physics, 42(9), 095102.
[36]. Zhao, X., Liu, M., & Zhu, Y. (2007). Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 515(18), 7127-7134.