2 thin films were deposited on glass substrates by sol–gel spin coating technique using titanium (IV) propoxide as a precursor. The spin coated films were annealed at 550oC for 4h. Influence of the precursor concentration on the structural, optical properties, and photocatlyic activity of the TiO2 thin films was also studied. The Grazing Incidence X-ray diffractometer and UV-VIS spectrophotometer were used to determine the structural and optical properties of the TiO2 thin films. The GIXRD results showed the formation of anatase TiO2 phase with crystallite size in the range of 17.6-22.4 nm. The optical transmittance spectra reveals that the film exhibits highly transparent character in the visible region, and band edge shifts towards lower wavelength side with increase in precursor concentration. The optical band gap energy values of the films shift towards the higher energy as a consequence of the precursor concentration. The photodegradation efficiencies typically decrease with an increase in precursor concentration excluding 0.2 M for the degradation of methyl blue (MB) under visible light irradiation.

">

Structural, Optical Properties and Photocatalytic Activity of Nanocrystalline TiO2 Thin Films Deposited by Sol–Gel Spin Coating

Durgam Komaraiah*, Eppa Radha**, M. V. Ramana Reddy***, J. Siva Kumar****, R. Sayanna*****
*_** PhD Scholar, Department of Physics, Osmania University, Hyderabad, Telangana, India.
***_ **** Professor, Department of Physics, Osmania University, Hyderabad, Telangana, India.
***** Professor (Rtd), Department of Physics, Osmania University, Hyderabad, Telangana, India.
Periodicity:April - June'2019
DOI : https://doi.org/10.26634/jms.7.1.15719

Abstract

Nanocrystalline TiO2 thin films were deposited on glass substrates by sol–gel spin coating technique using titanium (IV) propoxide as a precursor. The spin coated films were annealed at 550oC for 4h. Influence of the precursor concentration on the structural, optical properties, and photocatlyic activity of the TiO2 thin films was also studied. The Grazing Incidence X-ray diffractometer and UV-VIS spectrophotometer were used to determine the structural and optical properties of the TiO2 thin films. The GIXRD results showed the formation of anatase TiO2 phase with crystallite size in the range of 17.6-22.4 nm. The optical transmittance spectra reveals that the film exhibits highly transparent character in the visible region, and band edge shifts towards lower wavelength side with increase in precursor concentration. The optical band gap energy values of the films shift towards the higher energy as a consequence of the precursor concentration. The photodegradation efficiencies typically decrease with an increase in precursor concentration excluding 0.2 M for the degradation of methyl blue (MB) under visible light irradiation.

Keywords

Anatase TiO2 , Thin Films, Sol-Gel, Spin Coating, Band Gap Energy.

How to Cite this Article?

Komaraiah, D., Radha, E., Reddy, M. V. R., Sivakumar. J and Sayanna, R. (2019). Structural, optical properties and photocatalytic activity ofnanocrystalline TiO2 thin films deposited by sol–gel spin coating. i-manager’s Journal on Material Science , 7(1), 28-36. https://doi.org/10.26634/jms.7.1.15719

References

[1]. Anitha, B., Ravidhas, C., Venkatesh, R., Raj, A. M. E., Ravichandran, K., Subramanian, B., & Sanjeeviraja, C. (2017). Self assembled sulfur induced interconnected nanostructure TiO2 electrode for visible light photoresponse and photocatalytic application. Physica E: Low-dimensional Systems and Nanostructures, 91, 148- 160.
[2]. Arunachalam, A., Dhanapandian, S., Manoharan, C., & Sridhar, R. (2015). Characterization of sprayed TiO2 on ITO substrates for solar cell applications. Spectrochimica Acta Par t A : Molecular and Biomolecular Spectroscopy, 149, 904-912.
[3]. Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., & Lee, W. I. (2003). Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chemistry of Materials, 15(17), 3326-3331.
[4]. Chen, Y., Gao, H., Xiang, J., Dong, X., & Cao, Y. (2018). Enhanced photocatalytic activities of TiO2 - reduced graphene oxide nanocomposites controlled by TiOC interfacial chemical bond. Materials Research Bulletin, 99, 29-36.
[5]. Cui, Y., Sun, J., Hu, Z., Yu, W., Xu, N., Xu, N., ... & Wu, J. (2013). Synthesis, phase transition and optical properties of nanocrystalline titanium dioxide films deposited by plasma assisted reactive pulsed laser deposition. Surface and Coatings Technology, 231, 180-184.
[6]. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
[7]. Hu, B., & Liu, B. (2015). Dye-sensitized solar cells fabricated by the TiO2 nanostructural materials synthesized by electrospray and hydrothermal posttreatment. Applied Surface Science, 358, 412-417.
[8]. Jin, P., Miao, L., Tanemura, S., Xu, G., Tazawa, M., & Yoshimura, K. (2003). Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Applied Surface Science, 212, 775-781.
[9]. Kim, D. S., Han, S. J., & Kwak, S. Y. (2007). Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 316(1), 85-91.
[10]. Komaraiah, D., Madhukar, P., Vijayakumar, Y., Reddy, M. R., & Sayanna, R. (2016). Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Materials Today: Proceedings, 3(10), 3770-3778.
[11]. Komaraiah, D., Poloju, M., Vijayakumar, Y., Reddy, M. V. R., & Sayanna, R. (2015). Structural and optical properties of nanostructured TiO2 thin films prepared by sol-gel spin coating technique. International Journal of Engineering Research - online (IJOER), 3, 176-182.
[12]. Le Boulbar, E., Millon, E., Boulmer-Leborgne, C., Cachoncinlle, C., Hakim, B., & Ntsoenzok, E. (2014). Optical properties of rare earth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films, 553, 13-16.
[13]. Lee, W. J., Lee, J. M., Kochuveedu, S. T., Han, T. H., Jeong, H. Y., Park, M., ... & Kim, S. O. (2011). Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano, 6(1), 935-943.
[14]. Li, D., Carette, M., Granier, A., Landesman, J. P., & Goullet, A. (2013). In situ spectroscopic ellipsometry study of TiO2 films deposited by plasma enhanced chemical vapour deposition. Applied Surface Science, 283, 234- 239.
[15]. Liu, J., Han, L., An, N., Xing, L., Ma, H., Cheng, L., ... & Zhang, Q. (2017). Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental, 202, 642-652.
[16]. Lu, J., Wang, H., Peng, D., Chen, T., Dong, S., & Chang, Y. (2016). Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Physica E: Lowdimensional Systems and Nanostructures, 78, 41-48.
[17]. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment, 43(14), 2229-2246.
[18]. Mohanty, P., Kabiraj, D., Mandal, R. K., Kulriya, P. K., Sinha, A. S. K., & Rath, C. (2014). Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique. Journal of Magnetism and Magnetic Materials, 355, 240-245.
[19]. More, A. M., Gunjakar, J. L., & Lokhande, C. D. (2008). Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 129(2), 671-677.
[20]. Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111.
[21]. Nandiyanto, A. B. D., Zaen, R., & Oktiani, R. (2017). Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.10.010
[22]. Pérez, J. B., Courel, M., Pal, M., Delgado, F. P., & Mathews, N. R. (2017). Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceramics International, 43(17), 15777-15784.
[23]. Radha, E., Komaraiah, D., Reddy, M. R., Sayanna, R., & Sivakumar, J. (2018). Structural, Optical and Photocatalytic Properties of Anatase/ Rutile TiO2 Nanoparticles. i-manager's Journal on Material Science, 6(3), 43-49.
[24]. Shang, H., Han, D., Ma, M., Li, S., Xue, W., & Zhang, A. (2017). Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. Journal of Photochemistry and Photobiology B: Biology, 177, 112- 123.
[25]. Soltani, N., Saion, E., Hussein, M. Z., Erfani, M., Abedini, A., Bahmanrokh, G., ... & Vaziri, P. (2012). Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. International Journal of Molecular Sciences, 13(10), 12242-12258.
[26]. Stefan, M., Leostean, C., Pana, O., Toloman, D., Popa, A., Perhaita, I., ... & Barbu-Tudoran, L. (2016). Magnetic recoverable Fe3O4 -TiO2 : Eu composite nanoparticles with enhanced photocatalytic activity. Applied Surface Science, 390, 248-259.
[27]. Stroyuk, A. L., Kryukov, A. I., Kuchmii, S. Y., & Pokhodenko, V. D. (2005). Quantum size effects in semiconductor photocatalysis. Theoretical and Experimental Chemistry, 41(4), 207-228.
[28]. Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16(12), 1214.
[29]. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., & Xu, Y. (2015). Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 36(12), 2049-2070.
[30]. Wojcieszak, D. (2017). Analysis of Eu-effect on stabilization of the TiO2-anatase structure in high temperature and photoluminescence efficiency for the coatings as-deposited in magnetron sputtering process. Applied Surface Science, 421, 128-133.
[31]. Wojcieszak, D., Mazur, M., Gibson, D., Zatryb, G., Kaczmarek, D., &Misiewicz, J. (2017). Influence of europium on structure modification of TiO thin films 2 prepared by high energy magnetron sputtering process. Surface & Coatings Technology, 320, 132-137.
[32]. Wu, C. Y., Lee, Y. L., Lo, Y. S., Lin, C. J., & Wu, C. H. (2013). Thickness-dependent photocatalytic performance of nanocrystalline TiO thin films prepared 2 by sol-gel spin coating. Applied Surface Science, 280, 737-744.
[33]. Wu, D., Yi, M., Duan, H., Xu, J., & Wang, Q. (2016). Tough TiO -rGO-PDMAA nanocomposite hydrogel via 2 one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon, 108, 394- 403.
[34]. Ye, Y., Feng, Y., Bruning, H., Yntema, D., & Rijnaarts, H. H. M. (2018). Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Applied Catalysis B: Environmental, 220, 171-181.
[35]. Zaleta-Alejandre, E., Zapata-Torres, M., García- Hipólito, M., Aguilar-Frutis, M., Alarcon-Flores, G., Guzman-Mendoza, J., & Falcony, C. (2009). Structural and luminescent properties of europium doped TiO2 thick films synthesized by the ultrasonic spray pyrolysis technique. Journal of Physics D: Applied Physics, 42(9), 095102.
[36]. Zhao, X., Liu, M., & Zhu, Y. (2007). Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 515(18), 7127-7134.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.