References
[1]. Aburomman, A. A., & Reaz, M. B. I. (2016). A novel SVM-kNN-PSO ensemble method for intrusion detection system. Applied Soft Computing, 38, 360-372.
[2]. Al-Jarrah, O. Y., Al-Hammdi, Y., Yoo, P. D., Muhaidat, S., & Al-Qutayri, M. (2018). Semi-supervised multi-layered clustering model for intrusion detection. Digital Communications and Networks, 4(4), 277-286.
[3]. Ambusaidi, M. A., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Transactions on Computers, 65(10), 2986-2998.
[4]. Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A., & Bitsuamlak, G. (2017). An ensemble learning framework for anomaly detection in building energy consumption. Energy and Buildings, 144, 191-206.
[5]. Belavagi, M. C., & Muniyal, B. (2016). Performance evaluation of supervised machine learning algorithms for intrusion detection. Procedia Computer Science, 89, 117-123.
[6]. Dewa, Z., & Maglaras, L. A. (2016). Data mining and intrusion detection systems. International Journal of Advanced Computer Science and Applications, 7(1), 62- 71.
[7]. Duque, S., & bin Omar, M. N. (2015). Using data mining algorithms for developing a model for intrusion detection system (IDS). Procedia Computer Science, 61, 46-51.
[8]. Gautam, S. K., & Om, H. (2016). Computational neural network regression model for Host based Intrusion Detection System. Perspectives in Science, 8, 93-95.
[9]. Govindarajan, M., & Chandrasekaran, R. M. (2011). Intrusion detection using neural based hybrid classification methods. Computer Networks, 55(8), 1662- 1671.
[10]. Gupta, G. P., & Kulariya, M. (2016). A framework for fast and efficient cyber security network intrusion detection using Apache Spark. Procedia Computer Science, 93, 824-831.
[11]. Jabbar, M. A., & Aluvalu, R. (2017). RFAODE: A novel ensemble Intrusion Detection System. Procedia Computer Science, 115, 226-234.
[12]. Janarthanan, T., & Zargari, S. (2017). Feature selection in UNSW-NB15 and KDDCUP'99 datasets. In Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on (pp. 1881-1886).
[13]. Kyoto University. (2006). Traffic Data from Kyoto University's Honeypots. [Dataset]. Retrieved from http://www.takakura.com/Kyoto_data
[14]. Mehibs, S. M., & Hashim, S. H. (2018a). Proposed Network Intrusion Detection System based on fuzzy c mean algorithm in cloud computing environment. Journal of University of Babylon, 26(2), 27-35.
[15]. Mehibs, S. M., & Hashim, S. H. (2018b). Proposed Network Intrusion Detection System in cloud environment based on Back Propagation Neural Network. Journal of University of Babylon, 26(1), 2-40.
[16]. Modi, U., & Jain, A. (2016). An improved method to detect intrusion using machine learning algorithms. Informatics Engineering, an International Journal (IEIJ), 4(2), 17-29.
[17]. Rizvi, S., Labrador, G., Guyan, M., & Savan, J. (2016). Advocating for hybrid intrusion detection prevention system and framework improvement. Procedia Computer Science, 95, 369-374.
[18]. Sellami, L., Idoughi, D., Baadache, A., & Tiako, P. (2016). A novel detection intrusion approach for ubiquitous and pervasive environments. Procedia Computer Science, 94, 429-434.
[19]. Setiawan, B., Djanali, S., & Ahmad, T. (2017). A study on Intrusion Detection using centroid-based classification. Procedia Computer Science, 124, 672- 681.
[20]. Song, J., Takakura, H., & Okabe, Y. (2006). Description of Kyoto University benchmark data. Retrieved from http://www.takakura.com/Kyoto_data/ BenchmarkData-Description-v5.pdf [Accessed on 15 March 2016].
[21]. Verma, A., & Ranga, V. (2018). Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection Systems using Distance-based Machine Learning. Procedia Computer Science, 125, 709-716.
[22]. Viegas, E. K., Santin, A. O., & Oliveira, L. S. (2017). Toward a reliable anomaly-based intrusion detection in real-world environments. Computer Networks, 127, 200- 216.
[23]. Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers. Future Generation Computer Systems, 78, 987-994.