References
[1]. Abbasi, A., Chen, H., & Salem, A. (2008). Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems (TOIS), 26(3), 1-34.
[2]. Cornel Movie Dataset. (n.d). Movie Review Data [Data set]. Retrieved from http://www.cs.cornell.edu/ people/pabo/movie-review-data/ on January 15, 2017.
[3]. Dang, Y., Zhang, Y., & Chen, H. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46-53.
[4]. Dave, K., Lawrence, S., & Pennock, D. M. (2003, May). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In th Proceedings of the 12 International Conference on World Wide Web (pp. 519-528). ACM.
[5]. Dhande, L. L., & Patnaik, G. K. (2014). Analyzing sentiment of movie review data using Naive Bayes neural classifier. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 3(4), 313-320.
[6]. Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
[7]. Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. In Proceedings of International Conference on Empirical Methods in Natural Language Processing, 1(12),1-6.
[8]. Krishnakumar, A. (2006). Text categorization: Building a KNN classifier for the Reuters-21578 collections. Tech. report, Department of Computer Science, University of California, 1-11.
[9]. Li, S., & Jiang, Y. (2013). Semi-supervised sentiment classification using ranked opinion words. International Journl of Database Theory and Application, 6(6). 51-62.
[10]. Mullen, T., & Collier, N. (2004). Sentiment analysis using support vector machines with diverse information sources. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (pp. 412-418.
[11]. Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical methods in Natural Language Processing (Vol. 10, pp. 79-86). Association for Computational Linguistics.
[12]. Tripathi, G., & Naganna, S. (2015). Feature selection and classification approach for sentiment analysis. Machine Learning and Applications: An International Journal, 2(2), 1-16.
[13]. Tripathy, A., Agrawal, A., & Rath, S. K. (2015). Classification of sentimental reviews using machine learning techniques. Procedia Computer Science, 57, 821-829.
[14]. Turney, P. D. (2002, July). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (pp. 417-424). Association for Computational Linguistics.