References
[1]. Abdulhamid, S. M., Shuaib, M., Osho, O., Ismaila, I., & Alhassan, J. K. (2018). Comparative Analysis of Classification Algorithms for Email Spam Detection. International Journal of Computer Network and Information Security, 10(1), 60-67.
[2]. Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2007, October). A comparison of machine learning techniques for phishing detection. In Proceedings of the Anti-phishing Working Groups 2nd Annual eCrime Researchers Summit (pp. 60-69). ACM.
[3]. Aburrous, M., Hossain, M. A., Dahal, K., & Thabtah, F. (2010a). Intelligent phishing detection system for ebanking using fuzzy data mining. Expert Systems with Applications, 37(12), 7913-7921.
[4]. Aburrous, M., Hossain, M. A., Dahal, K., & Thabtah, F. (2010b, April). Predicting phishing websites using classification mining techniques with experimental case studies. In Information Technology: New Generations (ITNG), 2010 Seventh International Conference on (pp. 176-181). IEEE.
[5]. Aydin, M., & Baykal, N. (2015, September). Feature extraction and classification phishing websites based on URL. In Communications and Network Security (CNS), 2015 IEEE Conference on (pp. 769-770). IEEE.
[6]. Basnet, R. B., Sung, A. H., & Liu, Q. (2012, June). Feature selection for improved phishing detection. In International Conference on Industrial, Engineering and other Applications of Applied Intelligent Systems (pp. 252- 261). Springer, Berlin, Heidelberg.
[7]. Basnet, R. B., Sung, A. H., & Liu, Q. (2014). Learning to detect phishing URLs. International Journal of Research in Engineering and Technology, 3(6), 11-24.
[8]. Dua, D., & Taniskidou, E. K. (2017). Phishing Websites Dataset [Dataset]. UCI Machine Learning Repository. Retrieved from https://archive.ics.uci.edu/ml/datasets/ phishing+websites. [Accessed: 03-May-2018].
[9]. Feroz, M. N., & Mengel, S. (2014, October). Examination of data, rule generation and detection of phishing URLs using online logistic regression. In Big Data (Big Data), 2014 IEEE International (pp. 241-250).
[10]. Feroz, M. N., & Mengel, S. (2015, June). Phishing URL detection using URL ranking. In Big Data (BigData Congress), 2015 IEEE International Congress on (pp. 635- 638). IEEE.
[11]. Fu, A. Y., Wenyin, L., & Deng, X. (2006). Detecting phishing web pages with visual similarity assessment based on earth mover's distance (EMD). IEEE Transactions on Dependable and Secure Computing, 3(4), 301-311.
[12]. Garera, S., Provos, N., Chew, M., & Rubin, A. D. (2007, November). A framework for detection and measurement of phishing attacks. In Proceedings of the 2007 ACM Workshop on Recurring Malcode (pp. 1-8). ACM.
[13]. Gupta, D. R. (2016). Comparison of classification algorithm to detect phishing web pages using feature selection and extraction. International Journal of Research–Granthaalayah, 4(8), 118-135.
[14]. Huang, H., Qian, L., & Wang, Y. (2012). A SVM-based technique to detect phishing URLs. Information Technology Journal, 11(7), 921-925.
[15]. James, J., Sandhya, L., & Thomas, C. (2013, December). Detection of phishing URLs using machine learning techniques. In Control Communication and Computing (ICCC), 2013 International Conference on (pp. 304-309). IEEE.
[16]. Jin-Lee, L., Dong-Hyun, K., & Chang-Hoon, L. (2015). Heuristic-based Approach for Phishing Site Detection Using URL Features. In Third International Conference Journal on Advances in Computing, Electronics and Electrical Technology (pp. 131-135).
[17]. Khonji, M., Iraqi, Y., & Jones, A. (2011, September). Lexical url analysis for discriminating phishing and legitimate websites. In Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference (pp. 109-115). ACM.
[18]. Khonji, M., Iraqi, Y., & Jones, A. (2013). Phishing detection: A literature survey. IEEE Communications Surveys & Tutorials, 15(4), 2091-2121.
[19]. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Beyond blacklists: Learning to detect malicious web sites from suspicious URLs. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1245-1254). ACM.
[20]. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2011). Learning to detect malicious urls. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-24.
[21]. Marchal, S., Saari, K., Singh, N., & Asokan, N. (2016, June). Know your phish: Novel techniques for detecting phishing sites and their targets. In 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS) (pp. 323-333). IEEE.
[22]. Miyamoto, D., Hazeyama, H., & Kadobayashi, Y. (2008). An evaluation of machine learning-based methods for detection of phishing sites. In Advances in Neuro-Information Processing (pp. 539-546). Springer, Berlin, Heidelberg.
[23]. Moghimi, M., & Varjani, A. Y. (2016). New rule-based phishing detection method. Expert Systems with Applications, 53, 231-242.
[24]. Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014a). Intelligent rule-based phishing websites classification. IET Information Security, 8(3), 153-160.
[25]. Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014b). Predicting phishing websites based on self-structuring neural network. Neural Computing and Applications, 25(2), 443-458.
[26]. Pradeepthi, K. V., & Kannan, A. (2014, December). Performance study of classification techniques for phishing URL detection. In Advanced Computing (ICoAC), 2014 Sixth International Conference on (pp. 135-139). IEEE.
[27]. Ramanathan, V., & Wechsler, H. (2012, June). Phishing Website detection using latent Dirichlet allocation and AdaBoost. In Intelligence and Security Informatics (ISI), 2012 IEEE International Conference on (pp. 102-107). IEEE.
[28]. Sahoo, D., Liu, C., & Hoi, S. C. (2017). Malicious URL detection using machine learning: A survey (pp. 1-21) Retrieved from http://arxiv.org/abs/1701.07179
[29]. Weka 3. (2018). Data Mining with Open Source Machine Learning Software in Java. Retrieved from http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: 29- Jun-2018].