References
[1]. Abdulhamid, S. M., Latiff, M. S. A., Chiroma, H., Osho, O., Abdul-Salaam, G., Abubakar, A. I., & Herawan, T. (2017). A review on mobile SMS spam filtering techniques. IEEE Access, 5(1), 15650-66.
[2]. Aburrous, M., Hossain, M. A., Dahal, K., & Thabtah, F. (2010). Experimental case studies for investigating e-banking phishing techniques and attack strategies. Cognitive Computation, 2(3), 242-253.
[3]. Babagoli, M., Aghababa, M. P., & Solouk, V. (2018). Heuristic nonlinear regression strategy for detecting phishing websites. Soft Computing, 19(1), 1-13.
[4]. Damodaram, R., & Valarmathi, M. L. (2011). Phishing website detection and optimization using particle swarm optimization technique. International Journal of Computer Science and Security (IJCSS), 5(5), 477-490.
[5]. Goyal, B., & Bansal, M. (2017). Competent approach for type of phishing attack detection using multi-layer neural network. International Journal of Advanced Engineering Research and Science, 4(1), 210-215. https://dx.doi.org/10.22161/ijaers.4.1.34
[6]. Idris, I., & Abdulhamid, S. M. (2014). An improved AIS based e-mail classification technique for spam detection. arXiv preprint arXiv:1402.1242.
[7]. Khonji, M., Iraqi, Y., & Jones, A. (2013). Phishing detection: A literature survey. IEEE Communications Surveys & Tutorials, 15(4), 2091-2121.
[8]. Latiff, M. S. A., Madni, S. H. H., & Abdullahi, M. (2018). Fault tolerance aware scheduling technique for cloud computing environment using dynamic clustering algorithm. Neural Computing and Applications, 29(1), 279-293.
[9]. Madni, S. H. H., Latiff, M. S. A., Abdullahi, M., Abdulhamid, S. M., & Usman, M. J. (2017). Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PLOS One, 12(5), e0176321.
[10]. Madni, S. H. H., Latiff, M. S. A., Coulibaly, Y., & Abdulhamid, S. (2017). Recent advancements in resource allocation techniques for cloud computing environment: A systematic review. Cluster Computing, 20(3), 2489-2533.
[11]. Millersmiles Archives. (2018). Retrieved from http://www.millersmiles.co.uk/
[12]. Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014). Predicting phishing websites based on selfstructuring neural network. Neural Computing and Applications, 25(2), 443-458.
[13]. Mohammad, R., McCluskey, T. L., & Thabtah, F. A. (2013, July). Predicting phishing websites using neural network trained with back-propagation. In Proceedings of the 2013 World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
[14]. Phishtank. (2018). Retrieved from http://www. phishtank.com/
[15]. Priya, R. (2016). An ideal approach for detection of phishing attacks using naïve bayes classifier. International Journal of Computer Trends and Technology (IJCTT), 40(2), 84-87.
[16]. Starting Point Directory. (2018). Starting Point Web Directory. Retrieved from http://www.stpt.com/directory/
[17]. Wei, W., Li, J., Cao, L., Ou, Y., & Chen, J. (2013). Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web, 16(4), 449-475.
[18]. Yahoo Directory (2017). website: http://dir.yahoo. com/, Access date: 15/10/2017.