References
[1]. Addo-Tenkorang, R., & Helo, P. (2011). Enterprise resource planning (ERP): A review literature report. In Proceedings of the World Congress on Engineering and Computer Science (Vol. 2, pp. 19-21).
[2]. Cai, L., & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14, 2. DOI: http://doi.org/10.5334/dsj- 2015-002.
[3]. Chang, W. L. (2015). NIST Big Data Interoperability Framework: Volume 4, Security and Privacy (No. Special Publication (NIST SP)-1500-4).
[4]. Chen, M., Mao, S., Zhang, Y., & Leung, V. C. (2014). Big Data: Related Technologies, Challenges and Future Prospects. Springer.
[5]. Cormode, G., & Duffield, N. (2014). Sampling for big data: A tutorial. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (p. 1975). ACM.
[6]. Eckerson, W. W. (2002). Data quality and the bottom line: Achieving business success through a commitment to high quality data. The Data Warehousing Institute. Retrieved from http://download.101com.com/pub/tdwi/ Files/DQReport.pdf
[7]. Fan, W., & Geerts, F. (2012). Foundations of Data Quality Management - Synthesis Lectures on Data Management. Morgan & Claypool.
[8]. Fan, W., Geerts, F., Jia, X., & Kementsietsidis, A. (2008). Conditional functional dependencies for capturing data inconsistencies. ACM Transactions on Database Systems (TODS), 33(2), 6:1-6:48.
[9]. Feldman, M. (2016). The Big Data Challenge: Intelligent Tiered Storage at Scale - Actionable Market Intelligence for High Performance Computing [White Paper]. Retrieved from https://www.cray.com/sites/ default/files/resources/Integrated_Tiered_Storage_White paper.pdf
[10]. Floridi, L. (2014). Big Data and information quality. In The Philosophy of Information Quality (pp. 303-315). Springer, Cham.
[11]. Fürber, C., & Hepp, M. (2011). Towards a vocabulary for data quality management in semantic web architectures. In Proceedings of the 1st International Workshop on Linked Web Data Management (pp. 1-8). ACM.
[12]. Gadepally, V., Herr, T., Johnson, L., Milechin, L., Milosavljevic, M., & Miller, B. A. (2015). Sampling operations on big data. In Signals, Systems and Computers, 2015 49th Asilomar Conference on (pp. 1515-1519). IEEE.
[13]. Glowalla, P., Balazy, P., Basten, D., & Sunyaev, A. (2014). Process-driven data quality management--An application of the combined conceptual life cycle model. In System Sciences (HICSS), 2014 47th Hawaii International Conference on (pp. 4700-4709). IEEE.
[14]. Grijzenhout, S., & Marx, M. (2013). The quality of the XML web. Web Semantics: Science, Services and Agents on the World Wide Web, 19, 59-68.
[15]. Han, R., Nie, L., Ghanem, M. M., & Guo, Y. (2013). Elastic algorithms for guaranteeing quality monotonicity in big data mining. In Big Data, 2013 IEEE International Conference on (pp. 45-50). IEEE.
[16]. Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones- Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72-80.
[17]. Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2, 652-687.
[18]. Immonen, A., Pääkkönen, P., & Ovaska, E. (2015). Evaluating the quality of social media data in big data architecture. IEEE Access, 3, 2028-2043.
[19]. Jaya, M. I., Sidi, F., Ishak, I., Affendey, L. S., & Jabar, M. A. (2017). A review of data quality research in achieving high data quality within organization. Journal of Theoretical & Applied Information Technology, 95(12), 2647-2657.
[20]. Juddoo, S. (2015). Overview of data quality challenges in the context of Big Data. In Computing, Communication and Security (ICCCS , 2015 International Conference on (pp. 1-9). IEEE.
[21]. Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. (2012). The big data bootstrap. arXiv preprint arXiv:1206.6415.
[22]. Krogstie, J., & Gao, S. (2015). A semiotic approach to investigate quality issues of open big data ecosystems. In International Conference on Informatics and Semiotics in Organisations (pp. 41-50). Springer, Cham.
[23]. Lee, Y. W., & Strong, D. M. (2003). Knowing-why about data processes and data quality. Journal of Management Information Systems, 20(3), 13-39.
[24]. Levitin, A. V., & Redman, T. C. (1998). Data as a resource: properties, implications, and prescriptions. Sloan Management Review, 40(1), 89-102.
[25]. Liang, F., Kim, J., & Song, Q. (2016). A bootstrap Metropolis–Hastings algorithm for Bayesian analysis of big data. Technometrics, 58(3), 304-318.
[26]. Loshin, D. (2013). Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph. USA: Elsevier.
[27]. Mahanti, R. (2014). Critical success factors for implementing data profiling: The first step toward data quality. Software Quality Professional, 16(2), 13-26.
[28]. Maier, M., Serebrenik, A., & Vanderfeesten, I. T. P. (2013). Towards a big data reference architecture (Master's Thesis, University of Eindhoven).
[29]. Malik, P. (2013). Governing big data: Principles and practices. IBM Journal of Research and Development, 57(3/4), 1-13.
[30]. Merino, J., Caballero, I., Rivas, B., Serrano, M., & Piattini, M. (2016). A data quality in use model for big data. Future Generation Computer Systems, 63, 123- 130.
[31]. Pääkkönen, P., & Jokitulppo, J. (2017). Quality management architecture for social media data. Journal of Big Data, 4(1), 6. DOI: https://doi.org/10.1186/ s40537-017-0066-7
[32]. Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications of the ACM, 45(4), 211-218.
[33]. Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE Data Eng. Bull., 23(4), 3-13.
[34]. Satyanarayana, A. (2014). Intelligent sampling for big data using bootstrap sampling and Chebyshev inequality. In Electrical and Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on (pp. 1- 6). IEEE.
[35]. Sebastian-Coleman, L. (2012). Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework. USA: Newnes.
[36]. Serhani, M. A., El Kassabi, H. T., Taleb, I., & Nujum, A. (2016). An hybrid approach to quality evaluation across big data value chain. In Big Data (BigData Congress), 2016 IEEE International Congress on (pp. 418-425). IEEE.
[37]. Sidi, F., Panahy, P. H. S., Affendey, L. S., Jabar, M. A., Ibrahim, H., & Mustapha, A. (2012). Data quality: A survey of data quality dimensions. In Information Retrieval & Knowledge Management (CAMP), 2012 International Conference on (pp. 300-304). IEEE.
[38]. Sneed, H. M., & Erdoes, K. (2015). Testing big data (Assuring the quality of large databases). In Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference on (pp. 1-6). IEEE.
[39]. Soares, S. (2012). Big Data Governance: An Emerging Imperative. MC Press.
[40]. Strong, D. M., Lee, Y. W., & Wang, R. Y. (1997). Data quality in context. Communications of the ACM, 40(5), 103-110.
[41]. Taleb, I., Dssouli, R., & Serhani, M. A. (2015). Big data pre-processing: A quality framework. In Big Data (BigData Congress), 2015 IEEE International Congress on (pp. 191- 198). IEEE.
[42]. Taleb, I., El Kassabi, H. T., Serhani, M. A., Dssouli, R., & Bouhaddioui, C. (2016). Big data quality: A quality dimensions evaluation. In Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ ATC/ ScalCom/ CBDCom/ IoP/ SmartWorld), 2016 Intl. IEEE Conferences (pp. 759-765). IEEE.
[43]. Wang, R. Y. (1998). A product perspective on total data quality management. Communications of the ACM, 41(2), 58-65.
[44]. Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5- 33.
[45]. Zhou, H., Lou, J. G., Zhang, H., Lin, H., Lin, H., & Qin, T. (2015). An empirical study on quality issues of production big data platform. In Proceedings of the 37th International Conference on Software Engineering (Vol. 2, 17-26). IEEE Press.