References
[1]. Abdullahi, M., & Ngadi, M. A. (2016). Symbiotic Organism Search optimization based task scheduling in cloud computing environment. Future Generation Computer Systems, 56, 640-650.
[2]. Aljurayban, N. S., & Emam, A. (2015, March). Framework for cloud intrusion detection system service. In Web Applications and Networking (WSWAN), 2015 2nd World Symposium on (pp. 1-5). IEEE.
[3]. Bhat, A. H., Patra, S., & Jena, D. (2013). Machine learning approach for intrusion detection on cloud virtual machines. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 2(6), 56-66.
[4]. CIDD (n.d.). Cloud Intrusion Detection Dataset [Dataset]. Retrieved from http://www.di.unipi.it/ ~hkholidy/projects/ cidd/download.html
[5]. CISDA. (2009). A Detailed Analysis of the KDD CUP 99 Dataset [Dataset]. Retrieved from http://kdd.ics.uci. edu/databases/kddcup99/kddcup99.html, Access date: 26/03/2018
[6]. Idris, I., & Abdulhamid, S. M. (2014). An improved AIS based e-mail classification technique for spam detection. arXiv preprint arXiv:1402.1242.
[7]. ISCX. (2007). Information Centre of Excellence for Tech Innovation [Dataset]. Retrieved from http://www.iscx. ca/NSL-KDD/,Access date: 26/03/2018
[8]. KDD. (1999). Cup 1999 Data [Dataset]. Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html.
[9]. Latiff, M. S. A. (2017). A checkpointed league championship algorithm-based cloud scheduling scheme with secure fault tolerance responsiveness. Applied Soft Computing, 61, 670-680.
[10]. Latiff, M. S. A., Abdul-Salaam, G., & Madni, S. H. H. (2016). Secure scientific applications scheduling technique for cloud computing environment using global league championship algorithm. PloS One, 11(7), e0158102.
[11]. Latiff, M. S. A., Madni, S. H. H., & Abdullahi, M. (2018). Fault tolerance aware scheduling technique for cloud computing environment using dynamic clustering algorithm. Neural Computing and Applications, 29(1), 279-293.
[12]. Madni, S. H. H., Latiff, M. S. A., Abdullahi, M., & Usman, M. J. (2017). Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PloS One, 12(5), e0176321.
[13]. Madni, S. H. H., Latiff, M. S. A., & Coulibaly, Y. (2016). Resource scheduling for Infrastructure as a Service (IaaS) in cloud computing: Challenges and opportunities. Journal of Network and Computer Applications, 68, 173- 200.
[14]. Madni, S. H. H., Latiff, M. S. A., & Coulibaly, Y. (2017). Recent advancements in resource allocation techniques for cloud computing environment: A systematic review. Cluster Computing, 20(3), 2489-2533.
[15]. Mahajan, V., & Peddoju, S. K. (2017, May). Integration of network intrusion detection systems and honeypot networks for cloud security. In Computing, Communication and Automation (ICCCA), 2017 International Conference on (pp. 829-834). IEEE.
[16]. Mehmood, Y., Shibli, M. A., Kanwal, A., & Masood, R. (2015). Distributed intrusion detection system using mobile agents in cloud computing environment. In Information Assurance and Cyber Security (CIACS), 2015 Conference on (pp. 1-8). IEEE.
[17]. Modi, C. N., & Patel, D. (2013, April). A novel Hybrid- Network Intrusion Detection System (H-NIDS) in cloud computing. In Computational Intelligence in Cyber Security (CICS), 2013 IEEE Symposium on (pp. 23-30). IEEE.
[18]. Mirjalili, S. (2015). The Ant Lion optimizer. Advances in Engineering Software, 83, 80-98.
[19]. MIT. (1999). 1999 Darpa Intrusion Detection Evaluation Dataset [Dataset]. Retrieved from https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection- evaluation-dataset
[20]. Modi, C., Patel, D., Borisanya, B., Patel, A., & Rajarajan, M. (2012, October). A novel framework for intrusion detection in cloud. In Proceedings of the Fifth International Conference on Security of Information and Networks (pp. 67-74). ACM.
[21]. Nagar, U., Nanda, P., He, X., & Tan, Z. T. (2017, October). A framework for data security in cloud using collaborative intrusion detection scheme. In Proceedings of the 10th International Conference on Security of Information and Networks (pp. 188-193). ACM.
[22]. Pratik, P. J., & Madhu, B. R. (2013, July). Data mining based CIDS: Cloud intrusion detection system for masquerade attacks [DCIDSM]. In Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on (pp. 1-5). IEEE.
[23]. Rajendran, P. K., Muthukumar, B., & Nagarajan, G. (2015). Hybrid intrusion detection system for private cloud: A systematic approach. Procedia Computer Science, 48, 325-329.
[24]. Salek, Z., & Madani, F. M. (2016, October). Multil-evel Intrusion detection system in cloud environment based on trust level. In Computer and Knowledge Engineering (ICCKE), 2016 6th International Conference on (pp. 94-99). IEEE.
[25]. Shafi'I, M. A., Latiff, M. S. A., Chiroma, H., Osho, O., Abdul-Salaam, G., Abubakar, A. I., & Herawan, T. (2017). A review on mobile SMS spam filtering techniques. IEEE Access, 5, 15650-15666.
[26]. Singh, T., Verma, S., Kulshrestha, V., & Katiyar, S. (2016, March). Intrusion detection system using genetic algorithm for cloud. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies (p. 115). ACM.
[27]. UNB. (2018). Canadian Institute for Cyber security [Dataset]. Retrieved from http://nsl.cs.unb.ca/NSL-KDD Access date: 26/03/2018
[28]. Xing, T., Huang, D., Xu, L., Chung, C. J., & Khatkar, P. (2013, March). Snortflow: A openflow-based intrusion prevention system in cloud environment. In Research and Educational Experiment Workshop (GREE), 2013 Second GENI (pp. 89-92). IEEE.
[29]. Yassin, W., Udzir, N. I., Muda, Z., Abdullah, A., & Abdullah, M. T. (2012, June). A cloud-based intrusion detection service framework. In Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012 International Conference on (pp. 213-218). IEEE.