References
[1]. Africa, A. D. M., Aguilar, J. C. C. A., Lim, C. M. S., Pacheco, P. A. A., & Rodrin, S. E. C. (2017, December). Automated aquaculture system that regulates Ph, temperature and ammonia. In Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2017 IEEE 9th International Conference on (pp. 1-6). IEEE.
[2]. Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102-4107.
[3]. Al Shalabi, L., Shaaban, Z., & Kasasbeh, B. (2006). Data mining: A preprocessing engine. Journal of Computer Science, 2(9), 735-739.
[4]. Antanasijević, D., Pocajt, V., Perić-Grujić, A., & Ristić, M. (2014). Modelling of dissolved oxygen in the Danube River using Artificial Neural Networks and Monte Carlo simulation uncertainty analysis. Journal of Hydrology, 519, 1895-1907.
[5]. Anyachebelu, T. K., Conrad, M., & Ajmal, T. (2014, August). Surface water quality prediction system for Luton Hoo lake: A statistical approach. In Innovative Computing Technology (INTECH), 2014 Fourth International Conference on (pp. 146-151). IEEE.
[6]. Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35.
[7]. Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3-31.
[8]. Chaturvedi, D. K. (2010). Modeling and simulation of systems using Matlab and Simulink. CRC Press.
[9]. Chuang, W., & Lin, H. (2010, April). Research on monitoring system of aquiculture with multi-environmental factors. In Wearable Computing Systems (APWCS), 2010 Asia-Pacific Conference on (pp. 202- 205). IEEE.
[10]. Folorunso, T. A., Aibinu, A. M., Kolo, J. G., Sadiku, S. O. E. & Orire, A. M. (2017). Iterative parameter selection based Artificial Neural Network for water quality prediction in tank-cultured aquaculture system. 2nd International Engineering Conference (IEC 2017) (pp. 148-154).
[11]. Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682- 1690.
[12]. Han, J., Kamber, M., & Pei, J. (2012). Classification: advanced methods. In Data Mining Concepts and Techniques (3rd Ed) (pp. 393-443).
[13]. Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques (2nd Ed). Elsevier.
[14]. He, T., & Chen, P. (2010, August). Prediction of waterquality based on wavelet transform using vector machine. In 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science (pp. 76-81). IEEE.
[15]. Malek, S., Salleh, A., & Baba, M. S. (2010, March). A comparison between neural network based and fuzzy logic models for chlorophlly - An estimation. In Computer Engineering and Applications (ICCEA), 2010 Second International Conference on (Vol. 2, pp. 340-343). IEEE.
[16]. Mustaffa, Z., & Yusof, Y. (2011). A comparison of normalization techniques in predicting dengue outbreak. In International Conference on Business and Economics Research (Vol. 1).
[17]. Olyaie, E., Abyaneh, H. Z., & Mehr, A. D. (2017). A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geoscience Frontiers, 8(3), 517-527.
[18]. Schmid, B. H., & Koskiaho, J. (2006). Artificial Neural Network modeling of dissolved oxygen in a wetland pond: The case of Hovi, Finland. Journal of Hydrologic Engineering, 11(2), 188-192.
[19]. Xu, X., Hu, N., & Liu, B. (2011, August). Water quality prediction of Changjiang of Jingdezhen through Particle Swarm Optimization algorithm. In Management and Service Science (MASS), 2011 International Conference on (pp. 1-4). IEEE.
[20]. Yusof, Y., & Mustaffa, Z. (2011). Dengue outbreak prediction: A least squares Support Vector Machines approach. International Journal of Computer Theory and Engineering, 3(4), 489-493.