On the Development of a Novel Smell Agent Optimization (SAO) for Optimization Problems

A. T. Salawudeen*, M. B. Mu'azu **, Y. A. Sha'aban***, E. A. Adedokun****
*-**,****Department of Computer Engineering, Ahmadu Bello University, Zaria, Nigeria.
*** Department of Electrical Engineering, University of Hafer Al-Batin, Saudi Arabia.
Periodicity:December - February'2019
DOI : https://doi.org/10.26634/jpr.5.4.15677

Abstract

This paper presents the development of a new optimization algorithm called the Smell Agent Optimization (SAO). The algorithm uses the phenomenon of smell and the intuitive trailing behavior of an agent to identify a smell source. The developed algorithm has two basic modes used in the optimization process, which are the sniffing mode and trailing mode. In the sniffing mode, the evaporation of smell molecules from a source is modeled and in the trailing mode, the movement of an agent towards the smell molecules is modeled. The performance of SOA was evaluated using 10 benchmark functions and results was compared with PSO, ABC, and GA. Simulation results showed the efficiency of the developed SAO in solving unimodal and multimodal functions.

Keywords

SAO, Smell Molecules, PSO, ABC, GA, Olfaction.

How to Cite this Article?

Salawudeen, A. T., Mu'azu, M. B., Sha'aban, Y. A., & Adedokun, E. A. (2019).On the Development of a Novel Smell Agent Optimization (SAO) For Optimization Problems. i-manager’s Journal on Pattern Recognition, 5(4), 13-26. https://doi.org/10.26634/jpr.5.4.15677

References

[1]. Abdechiri, M., Meybodi, M. R., & Bahrami, H. (2013). Gases Brownian motion optimization: An algorithm for optimization (GBMO). Applied Soft Computing, 13(5), 2932-2946.
[2]. Amoore, J. E., & Hautala, E. (1983). Odor as an ald to chemical safety: Odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. Journal of Applied Toxicology, 3(6), 272-290.
[3]. Axel, R. (2005). Scents and sensibility: A molecular logic of olfactor y perception (Nobel lecture). Angewandte Chemie International Edition, 44(38), 6110- 6127.
[4]. Black. S. M. (n.d.). Chemistry of Smell (chem 1010) [Online].
[5]. Brand, P., Robertson, H. M., Lin, W., Pothula, R., Klingeman, W. E., Jurat-Fuentes, J. L., & Johnson, B. R. (2018). The origin of the odorant receptor gene family in insects. bioRxiv, 259424.
[6]. Buck, L. B. (2005). Unraveling the sense of smell (Nobel lecture). Angewandte Chemie International Edition, 44(38), 6128-6140.
[7]. Chapman, S., & Cowling, T. G. (1970). The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library. Cambridge University Press, 1, 27-52.
[8]. Chen, J., Lang, X., Wang, Y., Li, G., Yang, Z., & Fan, S. (2018). Comparative evaluation of different noncondensable gases on thermal behaviors, kinetics, high pressure properties, and product characteristics of heavy oil. Energy Conversion and Management, 162, 13-25.
[9]. de March, C. A., Topin, J., Bruguera, E., Novikov, G., Ikegami, K., Matsunami, H., & Golebiowski, J. (2018). Odorant receptor 7D4 activation dynamics. Angewandte Chemie, 130(17), 4644-4648.
[10]. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41.
[11]. Doty, R. L., Applebaum, S., Zusho, H., & Settle, R. G. (1985). Sex differences in odor identification ability: A crosscultural analysis. Neuropsychologia, 23(5), 667-672.
[12]. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95. Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.
[13]. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
[14]. Kumar, S., Moore, C., & Gonzalez, A. (2017). Perfume Chemistry: Analysis of Jasmine Oil by Gas Chromatography - Mass Spectrometry.
[15]. Li, X. L. (2002). An optimizing method based on autonomous animats: fish-swarm algorithm. Systems Engineering-Theory & Practice, 22(11), 32-38.
[16]. Lynch, P. J. (2018). Head anatomy with olfactory nerve. Olfactory bulb labeled in English. Retrieved from: https://commons.wikimedia.org/wiki/File:Head_olfactory _nerve_ _olfactory_bulb_en.png
[17]. Malarvizhi, K., & Kumar, M. (2015, February). Particle swarm optimization tuned BELBIC controller for 8/6 SRM operation. In Electronics and Communication Systems nd (ICECS), 2015 2 International Conference on (pp. 904- 909). IEEE.
[18]. Miller, C. C. (1924). The Stokes-Einstein law for diffusion in solution. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(740), 724-749.
[19]. Momin, J. A. M. I. L., & Yang, X. S. (2013). A literature survey of benchmark functions for global optimization problems. Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194.
[20]. Morrison. J. Human nose can detect 1 trillion odours [Online].
[21]. Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22(3), 52-67.
[22]. Pines, D. (2018). Theory of Quantum Liquids: Normal Fermi Liquids. CRC Press.
[23]. Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press.
[24]. Porter, J., Craven, B., Khan, R. M., Chang, S. J., Kang, I., Judkewitz, B., ... & Sobel, N. (2007). Mechanisms of scenttracking in humans. Nature Neuroscience, 10(1), 27.
[25]. Rinaldi, A. (2007). The scent of life: The exquisite complexity of the sense of smell in animals and humans. EMBO reports, 8(7), 629-633.
[26]. Salawudeen, A. T. (2015). Development of an Improved Cultural Artificial Fish Swarm Algorithm with Crossover. Department of Electrical and Computer Engineering, 154.
[27]. Scanes, C. G. (2018). Animal Perception Including Differences With Humans. In Animals and Human Society (pp. 1-11).
[28]. Smell. (n.d). (2017). In Dictionary.com. Retrieved on June 28, 2017, from http://www.dictionar y.com/ browse/smell.
[29]. Stevenson, R. J. (2009). An initial evaluation of the functions of human olfaction. Chemical Senses, 35(1), 3-20.
[30]. Sundaram, K. M., Kumar, R. S., Krishnakumar, C., & Sugavanam, K. R. (2016). Fuzzy logic and firefly algorithm based hybrid system for energy efficient operation of three phase induction motor drives. Indian Journal of Science and Technology, 9(1).
[31]. Tijani, S. A., & Mua'zu, M. B. (2015, November). Stabilization of inverted pendulum system using intelligent Linear Quadratic Regulator controller. In Computational Intelligence (IJCCI), 2015 7th International Joint Conference on (Vol. 1, pp. 325-333). IEEE.
[32]. Touhara, K. (2014). Odor and Pheromone Molecules, Receptors, and Behavioral Responses. In The Olfactory System (pp. 19-38). Springer, Tokyo.
[33]. Turabieh, H., & Abdullah, S. (2011, January). A hybrid fish swarm optimisation algorithm for solving examination timetabling problems. In International Conference on Learning and Intelligent Optimization (pp. 539-551). Springer, Berlin, Heidelberg.
[34]. Vogt, J. (2017). Quantitative Problem Solving in Physical Chemistry. In Exam Survival Guide: Physical Chemistry (pp. 1-8). Springer, Cham.
[35]. Wysocki, C. J., & Beauchamp, G. K. (1984). Ability to smell androstenone is genetically determined. Proceedings of the National Academy of Sciences, 81(15), 4899-4902.
[36]. Xing, B., & Gao, W. J. (2014). Innovative computational intelligence: A rough guide to 134 clever algorithms (pp. 105-121). Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing.
[37]. Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. arXiv preprint arXiv:1003.1409.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.