References
[1]. Beck, M. E., Weiss, T., Fischer, D., Fiechter, S., Jäger- Waldau, A., & Lux-Steiner, M. C. (2000). Structural analysis of Cu1-xAgxGaSe2 bulk materials and thin films. Thin Solid Films, 361, 130-134. https://doi.org/10.1016/S0040- 6090(99)00785-3
[2]. Bhattacharya, R. N. (2013). CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Solar Energy Materials and Solar Cells, 113, 96-99. https://doi.org/10.1016/j.solmat.2013.01.028
[3]. Chaure, N. B., Samantilleke, A. P., Burton, R. P., Young, + J., & Dharmadasa, I. M. (2005). Electrodeposition of p , p+, i, n and n+ -type copper indium gallium diselenide for development of multilayer thin film solar cells. Thin Solid Films, 472(1-2), 212-216. https://doi.org/10.1016/j.tsf. 2004.07.051
[4]. Chun, Y. G., Kim, K. H., & Yoon, K. H. (2005). Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films, 480, 46-49. https://doi.org/10.1016/j.tsf.2004. 11.078
[5]. Devaney, W. E., & Mickelsen, R. A. (1988). Vacuum deposition processes for CuInSe2 and CuInGaSe2 based solar cells. Solar Cells, 24(1-2), 19-26. https://doi.org/ 10.1016/0379-6787(88)90032-4
[6]. Hsu, W. H., Hsiang, H. I., & Yu, S. (2015). Crystallite formation mechanism of CuIn2 (Se, S) synthesized using solvothermal method. Ceramics International, 41(2), 3208-3213. https://doi.org/10.1016/j.ceramint.2014. 10.179
[7]. Kong, H., He, J., Meng, X., Tao, J., Sun, L., Yang, P., & Chu, J. (2014). Influence of Se supply for selenization of Cu (In, Ga) Se2 precursors deposited by sputtering from a single quaternary target. Materials Letters, 118, 21-23. https://doi.org/10.1016/j.matlet.2013.12.050
[8]. Lee, T. Y., Lee, I. H., Jung, S. H., & Chung, C. W. (2013). Characteristics of CdS thin films deposited on glass and Cu (In, Ga) Se2 layer using chemical bath deposition. Thin Solid Films, 548, 64-68. https://doi.org/10.1016/j.tsf.2013. 08.101
[9]. Monsefi, M., & Kuo, D. H. (2014). Defect state and electric transport of the Cu-poor, Cu-rich, and In-rich Cu(In,Ga)Se2 bulk materials. Materials Chemistry and Physics, 145(1-2), 255-259. https://doi.org/10.1016/j. matchemphys.2014.02.019
[10]. Naghavi, N., Mollica, F., Goffard, J., Posada, J., Duchatelet, A., Jubault, M., ... & Greffet, J. J. (2017). Ultrathin Cu (In, Ga) Se2 based solar cells. Thin Solid Films, 2 633, 55-60. https://doi.org/10.1016/j.tsf.2016.11.029
[11]. Okada, H., Lee, H. S., Wakahara, A., Yoshida, A., Ohshima, T., & Kamiya, T. (2006). Study of electron irradiation-induced defects in CuInSe2 and CuInxGa1- 2 xSe2 by electron spin resonance. Solar Energy Materials and Solar Cells, 90(1), 93-99. https://doi.org/10.1016/ j.solmat.2005.03.005
[12]. Pugalenthi, A. S., Balasundaraprabhu, R., Prasanna, S., Habibuddin, S., Muthukumarasamy, N., Rao, G. M., & Kannan, M. D. (2016). Effect of post deposition annealing on the structure, morphology, optical and electrical properties of CuInGaSe2 thin films. Optical Materials, 62, 132-138. https://doi.org/10.1016/ j.optmat.2016.09.045
[13]. Puttnins, S., Levcenco, S., Schwarzburg, K., Benndorf, G., Daume, F., Rahm, A., ... & Unold, T. (2013). Effect of sodium on material and device quality in low temperature deposited Cu(In,Ga)Se . Solar Energy 2 Materials and Solar Cells, 119, 281-286. https://doi.org/ 10.1016/j.solmat.2013.08.029
[14]. Ramanathan, K., Hasoon, F. S., Smith, S., Young, D. L., Contreras, M. A., Johnson, P. K., ... & Sites, J. R. (2003). Surface treatment of CuInGaSe2 thin films and its effect on the photovoltaic properties of solar cells. Journal of Physics and Chemistry of Solids, 64(9-10), 1495-1498. https://doi.org/10.1016/S0022-3697(03)00169-0
[15]. Ramanathan, K., Teeter, G., Keane, J. C., & Noufi, R. (2005). Properties of high-efficiency CuInGaSe2 thin film solar cells. Thin Solid Films, 480-481, 499-502. https://doi.org/10.1016/j.tsf.2004.11.050
[16]. Rana, T. R., & Kim, J. (2016). Phase engineering of CBD grown tin sulfide films by post-sulfurization and solar cell application. Current Applied Physics, 16(12), 1666- 1673. https://doi.org/10.1016/j.cap.2016.10.002
[17]. Robinson, R. D., Sadtler, B., Demchenko, D. O., Erdonmez, C. K., Wang, L. W., & Alivisatos, A. P. (2007). Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317(5836), 355-358. https://doi.org/10.1126/science.1142593
[18]. Sakurai, K., Hunger, R., Tsuchimochi, N., Baba, T., Matsubara, K., Fons, P., ... & Niki, S. (2003). Properties of CuInGaSe2 solar cells based upon an improved three- stage process. Thin Solid Films, 431-432, 6-10. https://doi.org/10.1016/S0040-6090(03)00226-8
[19]. Sugiyama, M., Dejene, F. B., Kinoshita, A., Fukaya, M., Maru, Y., Nakagawa, T., ... & Chichibu, S. F. (2006). The use of diethylselenide as a less-hazardous source in CuInGaSe2 photoabsorbing alloy formation by selenization of metal precursors premixed with Se. Journal of Crystal Growth, 294(2), 214-217. https://doi.org/10. 1016/j.jcrysgro.2006.05.062
[20]. Wasim, S. M., Durante, C., & Rincon, C. (1996). Red shift of the band gap of Fe doped CuIny Ga1− y, Se2. Materials Letters, 28(1-3), 231-235. https://doi.org/10. 1016/0167-577X(95)00270-7
[21]. Yanagisawa, T., Kojima, T., Koyanagi, T., Takahisa, K., & Nakamura, K. (2002). Changes in the characteristics of CuInGaSe2 solar cells under light irradiation and during recovery: Degradation analysis by the feeble light measuring method. Microelectronics Reliability, 42(2), 219-223. https://doi.org/10.1016/S0026-2714(01)00134- 2
[22]. Yang, J., Du, H. W., Chen, D. S., Xu, F., Zhou, P. H., Xu, J., & Ma, Z. Q. (2015). Analysis of recombination path for Cu(In,Ga)Se2 solar cells through luminescence. Materials Letters, 145, 236-238. https://doi.org/10.1016/ j.matlet.2015.01.105
[23]. Zhang, S. B., Wei, S. H., & Zunger, A. (1997). Stabilization of ternary compounds via ordered arrays of defect pairs. Physical Review Letters, 78(21), 4059. https://doi.org/10.1103/PhysRevLett.78.4059
[24]. Zhou, A. J., Mei, D., Kong, X. G., Xu, X. H., Feng, L. D., Dai, X. Y., ... & Li, J. Z. (2012). One-step synthesis of Cu(In,Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target. Thin Solid Films, 520(19), 6068-6074. https://doi.org/10.1016/j.tsf.2012.05.035