2Cu2X (RE= Rare earth, X= Cd, In, Mg) are used in the magnetic refrigeration technology due to their unique magnetic and physical properties. For more future aspect of technological applications, Gd2Cu2X (X= Cd, In, Mg) alloys have been preferred from RE2Cu2X series to study the spin polarized electronic, magnetic, and thermodynamic properties using first principal theory. The spin polarized electronic behavior of Gd2Cu2X (X= Cd, In, Mg) shows that Gd-f orbital electrons play main role in the electronic conduction and magnetization. Magnetic calculations show high accuracy with available experimental/theoretical literature values on these materials. Thermodynamic calculations have been carried out in the wide temperature and pressure range for the first time.

">

First Principle Electronic, Magnetic, and Thermodynamic Characterization of Gd2Cu2X (X= Cd, In, Mg)Isostructural Ternary Alloys

Naveen Kumar*, Sachin Kumar**, Kamna Yadav***, Jyoti Sagar ****, Dr. Ali JbaeerDawood*****
*-*** Department of Physics, M. M. H. College, Ghaziabad, Uttar Pradesh, India.
**** Department of Chemistry, S. S. V. College, Hapur, Uttar Pradesh, India.
***** Department of Physics, S. S. V. College, Hapur, Uttar Pradesh, India.
Periodicity:July - September'2019
DOI : https://doi.org/10.26634/jms.7.2.15646

Abstract

Ternary Rare earth transition metal alloys with 2:2:1 stoichiometry, viz. RE2Cu2X (RE= Rare earth, X= Cd, In, Mg) are used in the magnetic refrigeration technology due to their unique magnetic and physical properties. For more future aspect of technological applications, Gd2Cu2X (X= Cd, In, Mg) alloys have been preferred from RE2Cu2X series to study the spin polarized electronic, magnetic, and thermodynamic properties using first principal theory. The spin polarized electronic behavior of Gd2Cu2X (X= Cd, In, Mg) shows that Gd-f orbital electrons play main role in the electronic conduction and magnetization. Magnetic calculations show high accuracy with available experimental/theoretical literature values on these materials. Thermodynamic calculations have been carried out in the wide temperature and pressure range for the first time.

Keywords

Electronic Structure, Magnetic Properties, Thermodynamic Properties.

How to Cite this Article?

Kumar, N., Kumar, S., Yadav, K., Sagar, J., and Singh, R. P. (2019). First Principle Electronic, Magnetic and Thermodynamic Characterization of Gd2Cu2X (X= Cd, In, Mg) Isostructural Ternary Alloys. i-manager’s Journal on Material Science, 7(1), 18-34. https://doi.org/10.26634/jms.7.2.15646

References

[1]. Bartel, C. J., Millican, S. L., Deml, A. M., Rumptz, J. R., Tumas, W., Weimer, A. W., ... & Holder, A. M. (2018). Physical descriptor for the gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nature Communications, 9(4168), 1-10. https://doi.org/10.1016/j.intermet.2011.04.004
[2]. Becke, A. D. (1992). Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. The Journal of Chemical Physics, 97(12), 9173-9177. https://doi.org/ 10.1063/1.463343
[3]. Bendt, P., & Zunger, A. (1982). New approach for solving the density-functional self-consistent-field problem. Physical Review B, 26(6), 3114. https://doi.org/ 10.1103/PhysRevB.26.3114
[4]. Birch, F. (1947). Finite elastic strain of cubic crystals. Physical Review, 71(11), 809-824. https://doi.org/ 10.1103/ PhysRev.71.809
[5]. Blanco, M. A., Francisco, E., & Luana, V. (2004). GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. https://doi.org/10.1016/j.comphy.2003.12.001
[6]. Fickenscher, T., Rodewald, U. C., Niepmann, D., Mishra, R., Eschen, M., & Pöttgen, R. (2005). The Mo2FeB2 - and Mn2AlB -Type modifications of RE2Rh2Cd (RE = La, Pr, Nd, Sm, Tb, Dy). Zeitschrift für Naturforschung B, 60(3), 271-276. https://doi.org/10.1515/znb-2005-0306
[7]. Franco, V., Blázquez, J. S., Ingale, B., & Conde, A. (2012). The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annual Review of Materials Research, 42, 305- 342. https://doi.org/10.1146/annurev-matsci-062910- 100356
[8]. Gautam, R., Kumar, A. & Singh, R. P. (2017). First principle investigations on electronic, magnetic, thermodynamic, and transport properties of TlGdX2 (X = S, Se, Te). Acta Physica Polonica A, 132(4), 1371-1378.
[9]. Hermes, W., Schappacher, F. M., & Poettgen, R. (2010). The solid solutions Gd2Cu2In1 –xMgx –drastic increase of the curie temperature upon In/Mg substitution. Zeitschrift für Naturforschung B, 65(12), 1516- 1520. https://doi.org/10.1515/znb-2010-1216
[10]. Holder, J. and Granato, A. V. (1969). Thermodynamic properties of solids containing defects. Physical Review, 182 (3), 729-741. https://doi.org /10.1103/ PhysRev.182.729
[11]. Kaczorowski, D., Rogl, P., & Hiebl, K. (1996). Magnetic behavior in a series of cerium ternary intermetallics: Ce2T2 In (T=Ni, Cu, Rh, Pd, Pt, and Au). Physical Review B, 54(14), 9891-9902. https://doi.org/10. 1103/PhysRevB.54.9891
[12]. Kumar, R. K., Nair, H. S., Sahu, B. N., Xhakaza, S., & Strydom, A. M. (2017). Large magntocaloric effect and 3D Ising critical behaviour in Gd2Cu2 In. Materials Science, 1-7. (arXiv: 1711.09816).
[13]. Li, L., Namiki, T., Huo, D., Qian, Z., & Nishimura, K. (2013). Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound. Applied Physics Letters, 103(22), 222405. https://doi.org/10.1063/ 1.4834815
[14]. Li, L., Yi, Y., Su, K., Qi, Y., Huo, D., & Pöttgen, R. (2016). Magnetic properties and large magnetocaloric effect in Ho2Cu2 In and Ho Au In compounds. Journal of Materials Science, 51(11), 5421-5426. https://doi.org/10.1007/ s10853-016-9845-3
[15]. Miliyanchuk, K., Kolomiets, A. V., Galadzhun, Y. V., Havela, L., Bulyk, I. I., Trostianchyn, A. M., & Kalychak, Y. M. (2008). Structure and magnetism of new R2Cu2 In  hydrides (R= Ce, Gd). Chemistry of Metals and Alloys, 1, 46-49.
[16]. Mishra, R., Pöttgen, R., Hoffmann, R. D., Kaczorowski, D., Piotrowski, H., Mayer, P., ... & Mosel, B. D. (2001). Ternary rare earth (RE) gold compounds REAuCd and RE2Au2Cd. Zeitschrift für Anorganische und Allgemeine Chemie, 627(6), 1283-1291. https://doi. org/10.1002/1521-3749(200106)627:6%3C1283::AIDZAAC1283% 3E3.0.CO;2-L
[17]. Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. In Proceedings of the National Academy of Sciences of the United States of America, (Vol. 30, No. 9, pp. 244-247. https://doi.org/ 10.1073/pnas. 30.9.244
[18]. Otero-de-la-Roza, A., Abbasi-Pérez, D. and Luaña, V. (2011). Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer Physics Communications, 182(10), 2232-2248. https://doi.org/ 10.1016/j.comphy.2003. 12.001
[19]. Pöttgen, R., Doğan, A., & Rayaprol, S. (2006). Magnetic properties and specific heat studies of RE Pd Cd (RE = La,Ce,Nd). Journal of Physics Condensed 2 2 Matter, 18(23), 5473-5492. https://doi.org/10.1088/ 0953-8984/18/23/018
[20]. Rayaprol, S., & Pöttgen, R. (2006). Gd2Au2Cd: A Mo2FeB2-type intermetallic with ferromagnetic ordering and spin glass anomalies, Physical Review B, 73(21), 214403. https://doi.org/10.1103/PhysRevB.73.214403
[21]. Singh, R. P., Singh, R. K., & Rajagopalan, M. (2011). First-principle study on structural, elastic and electronic properties of rare-earth intermetallic compounds: TbCu and TbZn. Intermetallics, 19(10), 1359-1366.
[22]. Soulen, Jr., R. J., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., Broussard, P. R., Tanaka, C. T., Nowak, J., Moodera, J. S., Barry, A., & Coey, J. M. D. (1998). Measuring the spin polarization of a metal with a superconducting point contact. Science, 282(5386), 85-88. https://doi.org/10.1126/science. 282.5386. 85
[23]. Stadler, F., Fickenscher, T., & Pöttgen, R. (2001). Synthesis and structure of RE2Rh2Cd (RE = La, Ce, Pr, Nd, Sm). Zeitschrift für Naturforschung B, 56(11), 1241-1244. https://doi.org/10.1515/znb-2001-1122
[24]. von Barth, U., & Hedin, L. (1972). A local exchange-correlation potential for the spin polarized case: I. Journal of Physics C: Solid State Physics, 5(13), 1629-1642. https://doi.org/10.1088/0022-3719/5/13/012
[25]. Yang, Y., Zhang, Y., Xu, X., Geng, S., Hou, L., Li, X., ... & Wilde, G. (2017). Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. Journal of Alloys and Compounds, 692, 665-669. https://doi.org/10. 1016/j.jallcom.2016.09.10
[26]. Yi, Y., Li, L., Su, K., Qi, Y., & Huo, D. (2017). Large magnetocaloric effect in a wide temperature range induced by two successive magnetic phase transitions in Ho2Cu2Cd compound. Intermetallics, 80, 22-25. https://doi.org/10.1016/j.intermet.2016.10.005
[27]. Zhang, Y., Yang, Y., Xu, X., Geng, S., Hou, L., Li, X., ... & Wilde, G. (2016). Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite materials. Scientific Reports, 6, 34192.
[28]. Zhang, Y., Yang, Y., Xu, X., Hou, L., Ren, Z., Li, X., & Wilde, G. (2016). Large reversible magnetocaloric effect in RE2Cu2In (RE= Er and Tm) and enhanced refrigerant capacity in its composite materials. Journal of Physics D: Applied Physics, 49(14), 145002. https://doi.org/10.1088/ 0022-3727/49/14/145002
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.