References
[1]. Abdallah, H. H., Gadzhiev, O. B., & Adnan, R. (2009, November). Comparative study of theoretical partial charges of Zn and Mn-Schiff base complexes. In 13th International Electronic Conference on Synthetic Organic Chemistry (Vol. 13, pp. 1-10). MDPI. https://doi.org/10.3390/ecsoc-13-00245
[2]. Akman, F. (2017). Prediction of chemical reactivity of cellulose and chitosan based on density functional theory. Cellulose Chemistry and Technology, 51(3-4), 253-262.
[3]. Amorim, R. G., Zhong, X., Mukhopadhyay, S., Pandey, R., Rocha, A. R., & Karna, S. P. (2013). Strain-and electric field-induced band gap modulation in nitride nanomembranes. Journal of Physics: Condensed Matter, 25 (19), 195801. https://doi.org/10.1088/0953-8984/25/19/195801
[4]. An, H., Liang, H., Liu, Z., Yang, H., Liu, Q., & Wang, H. (2011). Nanostructures of debranched potato starch obtained by isoamylolysis. Journal of Food Science, 76(1), N11-N14. https://doi.org/10.1111/j.1750- 3841.2010.01881.x
[5]. Artacho, E., Cela, J. M, Gale, J. D., Garcia, A., Junquera, J., Martin, R. M, Ordejon, P., Portal, D. S., & Soler J. M. (2011). SIESTA 3.1. Fundacion General Universidad Autonoma de Madrid, Madrid.
[6]. Badawy, M. E., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 1-48. https://doi.org/10.1155/2011/ 460381
[7]. Bultinck, P., Van Alsenoy, C., Ayers, P. W., & Carbó- Dorca, R. (2007). Critical analysis and extension of the Hirshfeld atoms in molecules. The Journal of Chemical Physics, 126(14), 144111. https://doi.org/10.1063/1.2 715563
[8]. Chang, S. H., Wu, C. H., & Tsai, G. J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers, 181, 1026-1032. https://doi.org/10.1016/j.carbpol.2017.11. 047
[9]. Chien, P. J., Sheu, F., Huang, W. T., & Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102(4), 1192-1198. https://doi.org/10.1016/j.foodchem. 2006.07.007
[10]. Demazeau, G., Matar, S. F., & Poettgen, R. (2007). Chemical bonding in metallic rutile-type oxides TO2 (T= Ru, Rh, Pd, Pt). Zeitschrift für Naturforschung B, 62(7), 949- 954. https://doi.org/10.1515/znb-2007-0712
[11]. Djurovich, P. I., Mayo, E. I., Forrest, S. R., & Thompson, M. E. (2009). Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Organic Electronics, 10(3), 515-520. https://doi.org/10.1016/j.orgel.2008.12.011
[12]. Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63(1), 20-31.
[13]. Franca, E. F., Lins, R. D., Freitas, L. C., & Straatsma, T. P. (2008). Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation, 4(12), 2141-2149. https://doi.org/ 10.1021/ct8002964
[14]. Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241-247. https://doi.org/10.1590/S0104-14282009000 300013
[15]. Goy, R. C., Morais, S. T., & Assis, O. B. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26(1), 122-127. https://doi.org/10.1016/j.bjp.2015.09.010
[16]. Gray, F. M. (1997). Polymer Electrolytes. Cambridge: The Royal Society of Chemistry. https://doi.org/10. 1002/(SICI)1097-0126(199805)46:1<78::AID-PI16>3.0. CO;2-I
[17]. Gryczka, U., Gawrońska, A., Migdał, W., Gawroński, S. W., & Chmielewski, A. G. (2008). Study on biological activity of chitosan after radiation processing. Nukleonika, 53(Supplement 2):S73−S76.
[18]. Hafdani, F. N., & Sadeghinia, N. (2011). A review on application of chitosan as a natural antimicrobial. World Academy of Science, Engineering and Technology, 50, 252-256. https://doi.org/10.5281/zenodo.1062688
[19]. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758- 2946-4-17
[20]. He, H., Pandey, R., Boustani, I., & Karna, S. P. (2010). Metal-like electrical conductance in boron fullerenes. The Journal of Physical Chemistry C, 114(9), 4149-4152. https://doi.org/10.1021/jp9095776
[21]. Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44(2), 129-138. https://doi.org/10.1007 /BF00549096
[22]. Hughbanks, T., & Hoffmann, R. (1983). Chains of trans-edge-sharing molybdenum octahedra: Metalmetal bonding in extended systems. Journal of the American Chemical Society, 105(11), 3528-3537. https://doi.org/10.1021/ja00349a027
[23]. Jiao, G., Yu, G., Zhang, J., & Ewart, H. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223. https://doi.org/10.3390/md9020196
[24]. Kamala, K., Sivaperumal, P., & Rajaram, R. (2013). Extraction and characterization of water soluble chitosan from parapeneopsis stylifera shrimp shell waste and its antibacterial activity. International Journal of Scientific and Research Publications, 3( 4), 1-8.
[25]. Kawada, J., Yui, T., Okuyama, K., & Ogawa, K. (2001). Crystalline behavior of chitosan organic acid salts. Bioscience, Biotechnology, and Biochemistry, 65(11), 2542-2547. https://doi.org/10.1271/bbb.65.2542
[26]. Kim, S. (2018). Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/1708172
[27]. Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8(3), 203-226. https://doi.org/10.1007/ s10126-005-0097-5
[28]. Li, S., Xiong, Q., Lai, X., Li, X., Wan, M., Zhang, J., ... & Zhang, D. (2016). Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety, 15(2), 237-250. https://doi.org/10.1111/1541- 4337.12161
[29]. Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64(1), 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
[30]. Luo, X. L., Xu, J. J., Du, Y., & Chen, H. Y. (2004). A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry, 334 (2), 284-289. https://doi.org/10.1016/j.ab.2004.07.005
[31]. Marenich, A. V., Jerome, S. V., Cramer, C. J., & Truhlar, D. G. (2012). Charge model 5: An extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. Journal of Chemical Theory and Computation, 8(2), 527-541. https://doi.org/10.1021/ct200866d
[32]. Martins, A. F., Facchi, S. P., Follmann, H. D. M., Pereira, A. G. B., Rubira, A. F., & Muniz, E. C. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A review. International Journal of Molecular Sciences, 15(11), 20800-20832. https://doi.org/10.3390/ijms151120800
[33]. Matar, S. F., & Kfoury, C. N. (2016). Electronic and magnetic structures and bonding properties of Ce2CrN3 and U2CrN3 from first principles. Computational Condensed Matter, 9, 13-18. https://doi.org/10.101 6/j.cocom.2016.08.002
[34]. Matar, S. F., Pöttgen, R., Al Alam, A. F., & Ouaini, N. (2012). Electronic structure and chemical bonding of Li4Pt3Si. Chemical Physics Letters, 542, 47-51. https://doi.org/10.1016/j.cplett.2012.05.075
[35]. Matczak, P. (2016). A test of various partial atomic charge models for computations on diheteroaryl ketones and thioketones. Computation, 4(1), 1-13. https://doi.org/ 10.3390/computation4010003
[36]. Metzler, M., Chylińska, M., & Kaczmarek, H. (2015). Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. Journal of Polymer Research, 22(8), 146. https://doi.org/10.1007 /s10965-015-0781-8
[37]. Mourya, V. K., & Inamdar, N. N. (2008). Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers, 68(6), 1013-1051. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002
[38]. No, H. K., & Meyers, S. P. (1989). Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. Journal of Agricultural and Food Chemistry, 37(3), 580-583. https://doi.org/10.1021/ jf00087a002
[39]. Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K., & Ogawa, K. (2000). Structural diversity of chitosan and its complexes. Carbohydrate Polymers, 41(3), 237-247. https://doi.org/10.1016/S0144- 8617(99)00142-3
[40]. Ostrowska-Czubenko, J., Gierszewska, M., & Pieróg, M. (2015). pH-responsive hydrogel membranes based on modified chitosan: Water transport and kinetics of swelling. Journal of Polymer Research, 22(8), 153. https://doi.org/10.1007/s10965-015-0786-3
[41]. Oyebamiji, A. K., & Semire, B. (2016). Studies of anti-hypertensive activity of 1, 4-dihydropyridine derivatives: Combinations of DFT-QSAR and docking approaches. Bulletin of Pharmaceutical Research, 6(3), 105-113. https://doi.org/10.21276/bpr.2016.6.3.4
[42]. Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22), 3533-3539. https://doi.org/10.1021/ja00905a001
[43]. Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83(22), 8440-8441. https://doi.org/10.1073/pnas.83. 22.8440
[44]. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. https://doi.org/10.1103/PhysRevB.23.5048
[45]. Ramkumar, R., & Sundaram, M. M. (2016a). A biopolymer gel-decorated cobalt molybdate nanowafer: Effective graft polymer cross-linked with an organic acid for better energy storage. New Journal of Chemistry, 40(3), 2863-2877. https://doi.org/10.1 039/C5NJ02799C
[46]. Ramkumar, R., & Sundaram, M. M. (2016b). Electrochemical synthesis of polyaniline cross-linked NiMoO 4 nanofibre dendrites for energy storage devices. New Journal of Chemistr y, 40(9), 7456-7464. https://doi.org/10.1039/C6NJ00521G
[47]. Rangel, T., Rignanese, G. M., & Olevano, V. (2015). Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?. Beilstein Journal of Nanotechnology, 6(1), 1247-1259. https://doi.org/10.3762/bjnano.6.128
[48]. Ravindran, P., & Asokamani, R. (1997). Correlation between electronic structure, mechanical properties and phase stability in intermetallic compounds. Bulletin of Materials Science, 20(4), 613-622. https://doi.org/10. 1007/BF02744780
[49]. Reshak, A. H., Alahmed, Z. A., & Azam, S. (2014). Electronic structure, electronic charge density and optical properties analyses of Rb Al B O compound: DFT Calculation. International Journal of Electrochemical Science, 9, 975-989.
[50]. Sahariah, P., & Masson, M. (2017). Antimicrobial chitosan and chitosan derivatives: A review of the structure–activity relationship. Biomacromolecules, 18(11), 3846-3868. https://doi.org/10.1021/acs.biomac. 7b01058
[51]. Selvaraju, K., Jothi, M., & Kumaradhas, P. (2013). A charge density analysis on quarter thiophene molecular nanowire under applied electric field: A theoretical study. Journal of Computational and Theoretical Nanoscience, 10(2), 357-367. https://doi.org/10.1166/jctn.2013.2705
[52]. Shafiee, A., Salleh, M. M., & Yahaya, M. (2011). Determination of HOMO and LUMO of [6, 6]-phenyl C61- butyric acid 3-ethylthiophene ester and poly (3-octylthiophene- 2, 5-diyl) through voltametry characterization. Sains Malaysiana, 40(2), 173-176.
[53]. Skovstrup, S., Hansen, S. G., Skrydstrup, T., & Schiøtt, B. (2010). Conformational flexibility of chitosan: A molecular modeling study. Biomacromolecules, 11(11), 3196-3207. https://doi.org/10.1021/bm100736w
[54]. Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745-2779. https://doi.org/10.1088/0953-8984/14/11 /302
[55]. Tan, J., Guo, L., Lv, T., & Zhang, S. (2015). Experimental and computational evaluation of 3- indolebutyric acid as a corrosion inhibitor for mild steel in sulfuric acid solution. International Journal of Electrochemical Science, 10, 823-837. https://doi.org/ 10.1088/0953-8984/25/1 9/195801
[56]. Tang, Z. X., Qian, J. Q., & Shi, L. E. (2007). Characterizations of immobilized neutral lipase on chitosan nano-particles. Materials Letters, 61(1), 37-40. https://doi.org/10.1016/j.matlet.2006.04.048
[57]. Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Bialik-Wąs, K., & Sobczak-Kupiec, A. (2017). In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. Journal of Polymer Research, 24(10), 153. https://doi.org/10.1007/s10965-017-1315-3
[58]. Ugwu, D. I., Ezema, B. E., Eze, F. U., & Ugwuja, D. I. (2014). Synthesis and structural activity relationship study of antitubercular carboxamides. International Journal of Medicinal Chemistry, 2014,1-18. https://doi.org/10. 1155/2014/614808
[59]. Wang, B., Li, S. L., & Truhlar, D. G. (2014). Modeling the partial atomic charges in inorganometallic molecules and solids and charge redistribution in lithium-ion cathodes. Journal of Chemical Theory and Computation, 10(12), 5640-5650. https://doi.org/10. 1021/ct500790p
[60]. Wen, S., Guan, W., Wang, J., Lang, Z., Yan, L., & Su, Z. (2012). Theoretical investigation of structural and electronic propertyies of [PW12O40]3− on graphene layer. Dalton Transactions, 41(15), 4602-4607. https://doi.org/10.1039/C2DT12465C
[61]. Wu, Y., Yang, W., Wang, C., Hu, J., & Fu, S. (2005). Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International Journal of Pharmaceutics, 295(1-2), 235-245. https://doi.org/ 10.1016/j.ijpharm.2005.01.042
[62]. Yang, M., Yang, Y., Liu, B., Shen, G., & Yu, R. (2004). Amperometric glucose biosensor based on chitosan with improved selectivity and stability. Sensors and Actuators B: Chemical, 101(3), 269-276. https://doi.org/10.1016/ j.snb.2004.01.003
[63]. Yin, B., Yuan, R., Chai, Y., Chen, S., Cao, S., Xu, Y., & Fu, P. (2008). Amperometric glucose biosensors based on layer-by-layer assembly of chitosan and glucose oxidase on the Prussian blue-modified gold electrode. Biotechnology Letters, 30(2), 317-322. https://doi.org/ 10.1007/s10529-007-9534-z