Structures and Properties of Biopolymer Chitosan - A First Principle Study

Upma*, Mohan L. Verma**
*_** Department of Applied Physics, Shri Shankaracharya Group of Institutions (Shri Shankaracharya Technical Campus), Bhilai, Chhattisgarh, India.
Periodicity:October - December'2019
DOI : https://doi.org/10.26634/jms.7.3.15642

Abstract

The structural, electronic and chemical bonding properties of biopolymer chitosan in tetramer structures are investigated by using density functional theory. These polymer structures exhibit structural activity relationship because the activity of these polymer isomers varies with the structural modification and molecular weight. In this approach the Generalized Gradient Approximation (GGA) is used for the exchange-correlation potential. In density of states analysis the calculated forbidden energy gap is reduced by 2.23eV for cis-chitosan structure, deduces its semi-conducting behaviour with decreased crystallinity and improved bioactivity. Hirshfeld population and charge density techniques are used to analyse electrostatic interactions and the charge distribution within these molecules. Crystal orbital overlap population shows ionic interactions and provide chemical bonding information. Modification of chitosan improves the properties and provides the better functionally improved bio-polymer. This study is aimed to be used in various chemical industries, pharmaceutical and biomedical fields.

Keywords

Crystal Orbital Overlap Population, Density of States, Generalized Gradient Approximation, Bioactivity

How to Cite this Article?

Upma and Verma, M. L. (2019). Structures and Properties of Biopolymer Chitosan - A First Principle Study. i-manager’s Journal on Material Science, 7(3), 16-30. https://doi.org/10.26634/jms.7.3.15642

References

[1]. Abdallah, H. H., Gadzhiev, O. B., & Adnan, R. (2009, November). Comparative study of theoretical partial charges of Zn and Mn-Schiff base complexes. In 13th International Electronic Conference on Synthetic Organic Chemistry (Vol. 13, pp. 1-10). MDPI. https://doi.org/10.3390/ecsoc-13-00245
[2]. Akman, F. (2017). Prediction of chemical reactivity of cellulose and chitosan based on density functional theory. Cellulose Chemistry and Technology, 51(3-4), 253-262.
[3]. Amorim, R. G., Zhong, X., Mukhopadhyay, S., Pandey, R., Rocha, A. R., & Karna, S. P. (2013). Strain-and electric field-induced band gap modulation in nitride nanomembranes. Journal of Physics: Condensed Matter, 25 (19), 195801. https://doi.org/10.1088/0953-8984/25/19/195801
[4]. An, H., Liang, H., Liu, Z., Yang, H., Liu, Q., & Wang, H. (2011). Nanostructures of debranched potato starch obtained by isoamylolysis. Journal of Food Science, 76(1), N11-N14. https://doi.org/10.1111/j.1750- 3841.2010.01881.x
[5]. Artacho, E., Cela, J. M, Gale, J. D., Garcia, A., Junquera, J., Martin, R. M, Ordejon, P., Portal, D. S., & Soler J. M. (2011). SIESTA 3.1. Fundacion General Universidad Autonoma de Madrid, Madrid.
[6]. Badawy, M. E., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 1-48. https://doi.org/10.1155/2011/ 460381
[7]. Bultinck, P., Van Alsenoy, C., Ayers, P. W., & Carbó- Dorca, R. (2007). Critical analysis and extension of the Hirshfeld atoms in molecules. The Journal of Chemical Physics, 126(14), 144111. https://doi.org/10.1063/1.2 715563
[8]. Chang, S. H., Wu, C. H., & Tsai, G. J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers, 181, 1026-1032. https://doi.org/10.1016/j.carbpol.2017.11. 047
[9]. Chien, P. J., Sheu, F., Huang, W. T., & Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102(4), 1192-1198. https://doi.org/10.1016/j.foodchem. 2006.07.007
[10]. Demazeau, G., Matar, S. F., & Poettgen, R. (2007). Chemical bonding in metallic rutile-type oxides TO2 (T= Ru, Rh, Pd, Pt). Zeitschrift für Naturforschung B, 62(7), 949- 954. https://doi.org/10.1515/znb-2007-0712
[11]. Djurovich, P. I., Mayo, E. I., Forrest, S. R., & Thompson, M. E. (2009). Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Organic Electronics, 10(3), 515-520. https://doi.org/10.1016/j.orgel.2008.12.011
[12]. Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63(1), 20-31.
[13]. Franca, E. F., Lins, R. D., Freitas, L. C., & Straatsma, T. P. (2008). Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation, 4(12), 2141-2149. https://doi.org/ 10.1021/ct8002964
[14]. Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241-247. https://doi.org/10.1590/S0104-14282009000 300013
[15]. Goy, R. C., Morais, S. T., & Assis, O. B. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26(1), 122-127. https://doi.org/10.1016/j.bjp.2015.09.010
[16]. Gray, F. M. (1997). Polymer Electrolytes. Cambridge: The Royal Society of Chemistry. https://doi.org/10. 1002/(SICI)1097-0126(199805)46:1<78::AID-PI16>3.0. CO;2-I
[17]. Gryczka, U., Gawrońska, A., Migdał, W., Gawroński, S. W., & Chmielewski, A. G. (2008). Study on biological activity of chitosan after radiation processing. Nukleonika, 53(Supplement 2):S73−S76.
[18]. Hafdani, F. N., & Sadeghinia, N. (2011). A review on application of chitosan as a natural antimicrobial. World Academy of Science, Engineering and Technology, 50, 252-256. https://doi.org/10.5281/zenodo.1062688
[19]. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758- 2946-4-17
[20]. He, H., Pandey, R., Boustani, I., & Karna, S. P. (2010). Metal-like electrical conductance in boron fullerenes. The Journal of Physical Chemistry C, 114(9), 4149-4152. https://doi.org/10.1021/jp9095776
[21]. Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44(2), 129-138. https://doi.org/10.1007 /BF00549096
[22]. Hughbanks, T., & Hoffmann, R. (1983). Chains of trans-edge-sharing molybdenum octahedra: Metalmetal bonding in extended systems. Journal of the American Chemical Society, 105(11), 3528-3537. https://doi.org/10.1021/ja00349a027
[23]. Jiao, G., Yu, G., Zhang, J., & Ewart, H. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223. https://doi.org/10.3390/md9020196
[24]. Kamala, K., Sivaperumal, P., & Rajaram, R. (2013). Extraction and characterization of water soluble chitosan from parapeneopsis stylifera shrimp shell waste and its antibacterial activity. International Journal of Scientific and Research Publications, 3( 4), 1-8.
[25]. Kawada, J., Yui, T., Okuyama, K., & Ogawa, K. (2001). Crystalline behavior of chitosan organic acid salts. Bioscience, Biotechnology, and Biochemistry, 65(11), 2542-2547. https://doi.org/10.1271/bbb.65.2542
[26]. Kim, S. (2018). Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/1708172
[27]. Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8(3), 203-226. https://doi.org/10.1007/ s10126-005-0097-5
[28]. Li, S., Xiong, Q., Lai, X., Li, X., Wan, M., Zhang, J., ... & Zhang, D. (2016). Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety, 15(2), 237-250. https://doi.org/10.1111/1541- 4337.12161
[29]. Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64(1), 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
[30]. Luo, X. L., Xu, J. J., Du, Y., & Chen, H. Y. (2004). A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry, 334 (2), 284-289. https://doi.org/10.1016/j.ab.2004.07.005
[31]. Marenich, A. V., Jerome, S. V., Cramer, C. J., & Truhlar, D. G. (2012). Charge model 5: An extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. Journal of Chemical Theory and Computation, 8(2), 527-541. https://doi.org/10.1021/ct200866d
[32]. Martins, A. F., Facchi, S. P., Follmann, H. D. M., Pereira, A. G. B., Rubira, A. F., & Muniz, E. C. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A review. International Journal of Molecular Sciences, 15(11), 20800-20832. https://doi.org/10.3390/ijms151120800
[33]. Matar, S. F., & Kfoury, C. N. (2016). Electronic and magnetic structures and bonding properties of Ce2CrN3 and U2CrN3 from first principles. Computational Condensed Matter, 9, 13-18. https://doi.org/10.101 6/j.cocom.2016.08.002
[34]. Matar, S. F., Pöttgen, R., Al Alam, A. F., & Ouaini, N. (2012). Electronic structure and chemical bonding of Li4Pt3Si. Chemical Physics Letters, 542, 47-51. https://doi.org/10.1016/j.cplett.2012.05.075
[35]. Matczak, P. (2016). A test of various partial atomic charge models for computations on diheteroaryl ketones and thioketones. Computation, 4(1), 1-13. https://doi.org/ 10.3390/computation4010003
[36]. Metzler, M., Chylińska, M., & Kaczmarek, H. (2015). Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. Journal of Polymer Research, 22(8), 146. https://doi.org/10.1007 /s10965-015-0781-8
[37]. Mourya, V. K., & Inamdar, N. N. (2008). Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers, 68(6), 1013-1051. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002
[38]. No, H. K., & Meyers, S. P. (1989). Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. Journal of Agricultural and Food Chemistry, 37(3), 580-583. https://doi.org/10.1021/ jf00087a002
[39]. Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K., & Ogawa, K. (2000). Structural diversity of chitosan and its complexes. Carbohydrate Polymers, 41(3), 237-247. https://doi.org/10.1016/S0144- 8617(99)00142-3
[40]. Ostrowska-Czubenko, J., Gierszewska, M., & Pieróg, M. (2015). pH-responsive hydrogel membranes based on modified chitosan: Water transport and kinetics of swelling. Journal of Polymer Research, 22(8), 153. https://doi.org/10.1007/s10965-015-0786-3
[41]. Oyebamiji, A. K., & Semire, B. (2016). Studies of anti-hypertensive activity of 1, 4-dihydropyridine derivatives: Combinations of DFT-QSAR and docking approaches. Bulletin of Pharmaceutical Research, 6(3), 105-113. https://doi.org/10.21276/bpr.2016.6.3.4
[42]. Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22), 3533-3539. https://doi.org/10.1021/ja00905a001
[43]. Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83(22), 8440-8441. https://doi.org/10.1073/pnas.83. 22.8440
[44]. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. https://doi.org/10.1103/PhysRevB.23.5048
[45]. Ramkumar, R., & Sundaram, M. M. (2016a). A biopolymer gel-decorated cobalt molybdate nanowafer: Effective graft polymer cross-linked with an organic acid for better energy storage. New Journal of Chemistry, 40(3), 2863-2877. https://doi.org/10.1 039/C5NJ02799C
[46]. Ramkumar, R., & Sundaram, M. M. (2016b). Electrochemical synthesis of polyaniline cross-linked NiMoO 4 nanofibre dendrites for energy storage devices. New Journal of Chemistr y, 40(9), 7456-7464. https://doi.org/10.1039/C6NJ00521G
[47]. Rangel, T., Rignanese, G. M., & Olevano, V. (2015). Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?. Beilstein Journal of Nanotechnology, 6(1), 1247-1259. https://doi.org/10.3762/bjnano.6.128
[48]. Ravindran, P., & Asokamani, R. (1997). Correlation between electronic structure, mechanical properties and phase stability in intermetallic compounds. Bulletin of Materials Science, 20(4), 613-622. https://doi.org/10. 1007/BF02744780
[49]. Reshak, A. H., Alahmed, Z. A., & Azam, S. (2014). Electronic structure, electronic charge density and optical properties analyses of Rb Al B O compound: DFT Calculation. International Journal of Electrochemical Science, 9, 975-989.
[50]. Sahariah, P., & Masson, M. (2017). Antimicrobial chitosan and chitosan derivatives: A review of the structure–activity relationship. Biomacromolecules, 18(11), 3846-3868. https://doi.org/10.1021/acs.biomac. 7b01058
[51]. Selvaraju, K., Jothi, M., & Kumaradhas, P. (2013). A charge density analysis on quarter thiophene molecular nanowire under applied electric field: A theoretical study. Journal of Computational and Theoretical Nanoscience, 10(2), 357-367. https://doi.org/10.1166/jctn.2013.2705
[52]. Shafiee, A., Salleh, M. M., & Yahaya, M. (2011). Determination of HOMO and LUMO of [6, 6]-phenyl C61- butyric acid 3-ethylthiophene ester and poly (3-octylthiophene- 2, 5-diyl) through voltametry characterization. Sains Malaysiana, 40(2), 173-176.
[53]. Skovstrup, S., Hansen, S. G., Skrydstrup, T., & Schiøtt, B. (2010). Conformational flexibility of chitosan: A molecular modeling study. Biomacromolecules, 11(11), 3196-3207. https://doi.org/10.1021/bm100736w
[54]. Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745-2779. https://doi.org/10.1088/0953-8984/14/11 /302
[55]. Tan, J., Guo, L., Lv, T., & Zhang, S. (2015). Experimental and computational evaluation of 3- indolebutyric acid as a corrosion inhibitor for mild steel in sulfuric acid solution. International Journal of Electrochemical Science, 10, 823-837. https://doi.org/ 10.1088/0953-8984/25/1 9/195801
[56]. Tang, Z. X., Qian, J. Q., & Shi, L. E. (2007). Characterizations of immobilized neutral lipase on chitosan nano-particles. Materials Letters, 61(1), 37-40. https://doi.org/10.1016/j.matlet.2006.04.048
[57]. Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Bialik-Wąs, K., & Sobczak-Kupiec, A. (2017). In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. Journal of Polymer Research, 24(10), 153. https://doi.org/10.1007/s10965-017-1315-3
[58]. Ugwu, D. I., Ezema, B. E., Eze, F. U., & Ugwuja, D. I. (2014). Synthesis and structural activity relationship study of antitubercular carboxamides. International Journal of Medicinal Chemistry, 2014,1-18. https://doi.org/10. 1155/2014/614808
[59]. Wang, B., Li, S. L., & Truhlar, D. G. (2014). Modeling the partial atomic charges in inorganometallic molecules and solids and charge redistribution in lithium-ion cathodes. Journal of Chemical Theory and Computation, 10(12), 5640-5650. https://doi.org/10. 1021/ct500790p
[60]. Wen, S., Guan, W., Wang, J., Lang, Z., Yan, L., & Su, Z. (2012). Theoretical investigation of structural and electronic propertyies of [PW12O40]3− on graphene layer. Dalton Transactions, 41(15), 4602-4607. https://doi.org/10.1039/C2DT12465C
[61]. Wu, Y., Yang, W., Wang, C., Hu, J., & Fu, S. (2005). Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International Journal of Pharmaceutics, 295(1-2), 235-245. https://doi.org/ 10.1016/j.ijpharm.2005.01.042
[62]. Yang, M., Yang, Y., Liu, B., Shen, G., & Yu, R. (2004). Amperometric glucose biosensor based on chitosan with improved selectivity and stability. Sensors and Actuators B: Chemical, 101(3), 269-276. https://doi.org/10.1016/ j.snb.2004.01.003
[63]. Yin, B., Yuan, R., Chai, Y., Chen, S., Cao, S., Xu, Y., & Fu, P. (2008). Amperometric glucose biosensors based on layer-by-layer assembly of chitosan and glucose oxidase on the Prussian blue-modified gold electrode. Biotechnology Letters, 30(2), 317-322. https://doi.org/ 10.1007/s10529-007-9534-z
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.