References
[1]. Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining API-level features for robust malware detection in android. In International Conference on Security and Privacy in Communication Systems (pp. 86- 103). Springer, Cham.
[2]. Adebayo, O. S., & Aziz, N. A. (2014a, November). Techniques for analysing Android malware. In 2014 The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M), (pp. 1-6). IEEE.
[3]. Adebayo, O. S., & Aziz, N. A. (2014 b, December). Android malware classification using static code analysis and Apriori algorithm improved with particle swarm optimization. In 2014 Fourth World Congress on Information and Communication Technologies (WICT), (pp. 123-128). IEEE.
[4]. Adebayo, O. S., & Aziz, N. A. (2015). Static Code Analysis of permission-based features for android malware classification using apriori algorithm with Particle Swarm Optimization. Journal of Information Assurance & Security, 10(4).
[5]. Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. Conf. Very Large Data Bases, VLDB (Vol. 1215, pp. 487-499).
[6]. Blasing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., & Albayrak, S. (2010). An android application sandbox system for suspicious software detection. In 2010 5th International Conference on Malicious and Unwanted Software (MALWARE 2010) (pp. 55-62). IEEE.
[7]. Bose, A., Hu, X., Shin, K. G., & Park, T. (2008, June). Behavioral detection of malware on mobile handsets. In Proceedings of the 6th international Conference on Mobile Systems, Applications, and Services (pp. 225-238). ACM.
[8]. Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: behavior-based malware detection system for android. In Proceedings of the 1st ACM Workshop on Security and Privacy In Smartphones and Mobile Devices (pp. 15-26). ACM.
[9]. Christodorescu, M., Jha, S., Seshia, S. A., Song, D., & Bryant, R. E. (2005, May). Semantics-aware malware detection. In IEEE Symposium on Security and Privacy, (pp. 32-46). IEEE.
[11]. Contagio (ND). Contagio Mobile [Data Set] Retrieved from http://www.contagiominidump.com
[12]. Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012). MADAM: a multi-level anomaly detector for android malware. In International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security (pp. 240-253).
[13]. Drake, J. J., Lanier, Z., Mulliner, C., Fora, P. O., Ridley, S. A., & Wicherski, G. (2014). Android hacker's handbook. USA: John Wiley & Sons.
[14]. Eder, T., Rodler, M., Vymazal, D., & Zeilinger, M. (2013). A framework for analyzing android applications. In 1st international Workshop on Emerging Cyberthreats and Countermeasures (ECTCM) (pp. 711-719).
[15]. El Aziz, M. A., Ewees, A. A., & Hassanien, A. E. (2017). Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242-256.
[16]. GooglePlay. (2013). Google Play Store [Mobile Apps] Retrieved from https://play.google.com/store
[17]. Holla, S., & Katti, M. M. (2012). Android based mobile application development and its security. International Journal of Computer Trends and Technology, 3(3), 486- 490.
[18]. Hu, H., & Bai, Y. (2017). Ting Xu Improved whale optimization algorithms based on inertia weights and theirs applications. International Journal of Circuits, Systems and Signal Processing, 11, 12-26.
[19]. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95(c), 51-67.
[20]. MNCS, M., MSAN, M., & Mishra, A. (2012). Malware Detection, Supportive Software Agents and Its Classification Schemes. International Journal of Network Security & Its Applications, 4(6), 33-49.
[21]. Pillai, A., Nandakumar, S. K., Priyadarshini, & Devabalaji, K. R. (2017). Economic Dispatch Problem using Whale Optimization Algorithm. International Journal of Pure and Applied Mathematics, 117(22), 253-257.
[22]. Rajeshkumar, J., & Kousalya, K. (2017). Diabetes Data Classification Using Whale Optimization Algorithm and Back propagation Neural Network. International Research Journal of Pharmacy, 8(11), 219-222. Retrieved from www.irjponline.com
[23]. Shabtai, A., Fledel, Y., & Elovici, Y. (2010, December). Automated static code analysis for classifying android applications using machine learning. In 2010 International Conference on Computational Intelligence and Security (pp. 329-333). IEEE.
[24]. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2011). Andromaly: A Behavioral Malware Detection Framework for Android Devices. Journal of Intelligent Information Systems, 38(1) 161-190.
[25]. Siddiqui, M. (2008). Data mining methods for malware detection (Doctoral Dissertation, University of Central Florida).
[26]. Varghese, V. J., & Walker, S. (2011). Dissecting Andro Malware. Retrieved from https://www.sans.org/readingroom/ whitepapers/malicious/dissecting-andro-malware- 33754
[27]. Walenstein, A., Deshotels, L., & Lakhotia, A. (2012, June). Program structure-based feature selection for android malware analysis. In International Conference on Security and Privacy in Mobile Information and Communication Systems (pp. 51-52). Springer, Berlin, Heidelberg.
[28]. Yogapriya, J., Saravanabhavan, C., & Vennila, I. (2018). Medical Image Retrieval System using Local Binary Patterns, Whale Optimization & Relevance Vector Machine Algorithms. Taga Journal, 14, 3164-3191.
[29]. Zaied, A. N., Ismail, M. M., & Mohamed, S. S. (2017). An Optimization Algorithm for Optimal Problem of Permutation Flow Shop Scheduling. International Journal of Computer Applications, 173(2), 26-34.