References
[1]. Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., ... & Shoseyov, O. (2016). Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 39, 76-88. https://doi.org/10.1016/j. copbio.2016.01.002
[2]. An, Y. H., & Draughn, R. A. (1999). Mechanical Testing of Bone and the Bone-Implant Interface (1st Ed.). CRC Press.
[3]. Campbell, M., Bureau, M. N., & Yahia, L. H. (2008). Performance of CF/PA12 composite femoral stems. Journal of Materials Science: Materials in Medicine, 19(2), 683-693. https://doi.org/10.1007/s10856-007-3073 -y
[4]. Carter, D. R., & Hayes, W. C. (1977). The compressive behavior of bone as a two-phase porous structure. The Journal of Bone and Joint Surgery. American volume, 59(7), 954-962. https://doi.org/10.2106/00004623- 197759070-00021
[5]. Choren, J. A., Heinrich, S. M., & Silver-Thorn, M. B. (2013). Young's modulus and volume porosity relationships for additive manufacturing applications. Journal of Materials Science, 48(15), 5103-5112. https://doi.org/10.1007/s10853-013-7237-5
[6]. Cooper, K. G. (2001). Rapid prototyping technology: Selection and application. Assembly Automation, 21(4), 358-359. https://doi.org/10.1108/aa.2001.21.4.358.1
[7]. Corrêa, A. C., de Morais Teixeira, E., Carmona, V. B., Teodoro, K. B. R., Ribeiro, C., Mattoso, L. H. C., & Marconcini, J. M. (2014). Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose, 21(1), 311-322. https://doi.org/10.1007/s10570-013-0132-z
[8]. Giles Jr, H. F., Wagner Jr, J. R., & Mount III, E. M. (2005). Extrusion: The Definitive Processing Guide and Handbook. Norwich, New York: William Andrew.
[9]. Lee, K. Y., Aitomäki, Y., Berglund, L. A., Oksman, K., & Bismarck, A. (2014). On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 105, 15-27. https://doi.org/10. 1016/j.compscitech.2014.08.032
[10]. Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325. https://doi.org/ 10.1016/j.eurpolymj.2014.07.025
[11]. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/ 10.1039/C0CS00108B
[12]. Mueller, B. (2012). Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing. Assembly Automation, 32 (2).https://doi.org/10.1108/aa.2012.03332baa.010
[13]. Rahim, T. N. A. T., Abdullah, A. M., Akil, H. M., & Mohamad, D. (2016, December). Comparison of mechanical properties for polyamide 12 compositebased biomaterials fabricated by fused filament fabrication and injection molding. In AIP Conference Proceedings (Vol. 1791, No. 1, p. 020007). AIP Publishing. https://doi.org/10.1063/1.4968862
[14]. Rauwendaal, C. (2014). Polymer Extrusion (5th Ed.). Munich, Germany: Carl Hanser Verlag GmbH & Co. KG. https://doi.org/10.3139/9781569905395
[15]. Rhee, S., & White, J. L. (2002). Crystal structure and morphology of biaxially oriented polyamide 12 films. Journal of Polymer Science Part B: Polymer Physics, 40(12), 1189-1200. https://doi.org/10.1002/polb.10181
[16]. Slotwinski, J. A., & Garboczi, E. J. (2015). Metrology needs for metal additive manufacturing powders. Jom, 67(3), 538-543. https://doi.org/10.1007/s11837-014- 1290-7
[17]. Speidel, M. O., & Uggowitzer, P. J. (1998). Materials in Medicine. Switzerland: Vdf Hochschulverlag AG.