References
[1]. Abou-Abbas, L., Alaie, H. F., & Tadj, C. (2015). Automatic detection of the expiratory and inspiratory phases in newborn cry signals. Biomedical Signal Processing and Control, 19, 35-43.
[2]. Aibinu, A. M., Salami, M. J. E., & Shafie, A. A. (2010a). Determination of complex-valued parametric model coefficients using Artificial Neural Network technique. advances in artificial neural Systems, 2010, 1687-7594.
[3]. Aibinu, A. M., Salami, M. J. E., & Shafie, A. A. (2010, November). Application of modeling techniques to diabetes diagnosis. In Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on (pp. 194-198). IEEE.
[4]. Aibinu, A. M., Salami, M. J. E., & Shafie, A. A. (2011). A novel signal diagnosis technique using pseudo complex- valued autoregressive technique. Expert Systems with Applications, 38(8), 9063-9069.
[5]. Aibinu, A. M., Salami, M. J. E., & Shafie, A. A. (2012). Artificial neural network based autoregressive modeling technique with application in voice activity detection. Engineering Applications of Artificial Intelligence, 25(6), 1265-1276.
[6]. Alaie, H. F., Abou-Abbas, L., & Tadj, C. (2016). Cry-based infant pathology classification using GMMs. Speech Communication, 77, 28-52.
[7]. Baareh, A. K. M., Sheta, A. F., & Khnaifes, K. A. (2006). Forecasting river flow in the USA: A comparison between Auto-Regression and Neural Network non-parametric models, Journal of Computer Science, 2(10), 775-780.
[8]. Bandala, A. A., Lim, A. M., Cai, M. A. D., Bacar, A. J. C., & Manosca, A. C. G. (2014). Modelling and characterization of an Artificial Neural Network for infant cr y recognition using Mel-Frequency Cepstral Coefficients. Proc. of TENCON 2014 – 2014 IEEE Region 10 Conference.
[9]. Bănică, I. A., Cucu, H., Buzo, A., Burileanu, D., & Burileanu, C. (2016, June). Automatic methods for infant cry classification. In Communications (COMM), 2016 International Conference on (pp. 51-54). IEEE.
[10]. Chandralingam, S., Anjaneyulu, T., & Satyanarayana, K. (2012). Estimation of fundamental and formant frequencies of infants cries; a study of infants with congenital heart disorder. Indian Journal of Computer Science and Engineering, 3(4), 574-582.
[11]. Chittora, A., & Patil, H. A. (2015, May). Analysis of normal and pathological infant cries using bispectrum features derived using HOSVD. In BioSignal Analysis, Processing and Systems (ICBAPS), 2015 International Conference on (pp. 151-155). IEEE.
[12]. Designing Buildings Wiki. (2017). Parametric Modeling. Retrieved from https://www.designing buildings.co.uk/wiki/Parametric_modelling
[13]. Ding, J., & Chang, Y. (2011). Noise Reduction in Speech Recognition. Retrieved from https://slideus.org/ philosophy-of-the-money.html?utm_source=noise-reduction- in-speech-recognition
[14]. Garcia, J. O., & Garcia, C. R. (2003, July). Mel-frequency cepstrum coefficients extraction from infant cry for classification of normal and pathological cry with feed-forward neural networks. In Neural Networks, 2003. Proceedings of the International Joint Conference on (Vol. 4, pp. 3140-3145). IEEE.
[15]. Hariharan, M., Chee, L. S., & Yaacob, S. (2012). Analysis of infant cry through weighted linear prediction cepstral coefficients and probabilistic neural network. Journal of Medical Systems, 36(3), 1309-1315.
[16]. Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial Neural Networks: A tutorial. Computer, 29(3), 31-44.
[17]. Janse, P. V., Magre, S. B., Kurzekar, P. K., & Deshmukh, R. R. (2014). A comparative study between MFCC and DWT Feature Extraction Technique. International Journal of Engineering Research and Technology, 3(1), 3124- 3127.
[18]. Kheddache, Y., & Tadj, C. (2012, July). Newborn's pathological cry identification system. In Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on (pp. 1024-1029). IEEE.
[19]. Lederman, D. (2002). Automatic classification of infants' Cry (Master's Thesis, Ben-Gurion University of the Negev).
[20]. Limantoro, W. S., Fatichah, C., & Yuhana, U. L. (2016, October). Application development for recognizing type of infant's cry sound. In Information & Communication Technology and Systems (ICTS), 2016 International Conference on (pp. 157-161). IEEE.
[21]. Naithani, G. (2015). Acoustic Analysis of Infant Cry Signals (Masters Thesis, Tampere University of Technology).
[22]. Onumanyi, A. J., Onwuka, E. N., Aibinu, A. M., Ugweje, O. C., & Salami, M. J. E. (2014). A real valued neural network based autoregressive energy detector for cognitive radio application. International Scholarly Research Notices, Hindawi Publishing Corporation, 2014.
[23]. Orozco, J., & Reyes-Garcia, C. A. (2003, September). Implementation and analysis of training algorithms for the classification of infant cry with feed-forward neural networks. In Intelligent Signal Processing, 2003 IEEE International Symposium on (pp. 271-276). IEEE.
[24]. Patil, H. A. (2009, February). Infant identification from their cry. In Advances in Pattern Recognition, 2009. ICAPR'09. Seventh International Conference on (pp. 107- 110). IEEE.
[25]. Reyes-Galaviz, O. F., & Reyes-Garcia, C. A. (2004). A system for the processing of infant cry to recognize pathologies in recently born babies with neural networks. In 9th Conference Speech and Computer.
[26]. Reyes-Galaviz, O. F., Cano-Ortiz, S. D., & Reyes- García, C. A. (2008, October). Evolutionary-neural system to classify infant cry units for pathologies identification in recently born babies. In Artificial Intelligence, 2008. MICAI'08. Seventh Mexican International Conference on (pp. 330-335). IEEE.
[27]. Rosales-Pérez, A., Reyes-García, C. A., Gonzalez, J. A., Reyes-Galaviz, O. F., Escalante, H. J., & Orlandi, S. (2015). Classifying infant cry patterns by the Genetic Selection of a Fuzzy Model. Biomedical Signal Processing and Control, 17, 38-46.
[28]. Rosita, Y. D., & Junaedi, H. (2016, October). Infant's cry sound classification using Mel-Frequency Cepstrum Coefficients feature extraction and Backpropagation Neural Network. In Science and Technology-Computer (ICST), International Conference on (pp. 160-166). IEEE.
[29]. Sahak, R., Mansor, W., Khuan, L. Y., Zabidi, A., & Yassin, A. I. M. (2012, January). Detection of asphyxia from infant cry using support vector machine and multilayer perceptron integrated with Orthogonal Least Square. In Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on (pp. 906-909). IEEE.
[30]. Saraswathy, J., Hariharan, M., Yaacob, S., & Khairunizam, W. (2012, Februar y). Automatic classification of infant cry: A review. In Biomedical Engineering (ICoBE), 2012 International Conference on (pp. 543-548). IEEE.
[31]. Satapathy, S. C., Bhateja, V., Udgata, S. K., & Pattnaik, P. K. (2013). Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (Vol. 199). Springer Science & Business Media.
[32]. Srijiranon, K., & Eiamkanitchat, N. (2014, October). Application of neuro-fuzzy approaches to recognition and classification of infant cry. In TENCON 2014-2014 IEEE Region 10 Conference (pp. 1-6). IEEE.
[33]. Vocal Tract. (2017). Voice Science Works. Retrieved from https://www.voicescienceworks.org/vocal-tract.html
[34]. Wahid, N. S. A., Saad, P., & Hariharan, M. (2016a). Automatic infant cry pattern classification for a multiclass problem. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(9), 45-52.
[35]. Wahid, N. S. A., Saad, P., & Hariharan, M. (2016b). Automatic infant cry classification using radial basis function network. Journal of Advanced Research in Applied Sciences and Engineering Technology, 4(1), 12-28.
[36]. Zabidi, A., Yassin, I. M., Hassan, H. A., Ismail, N., Hamzah, M. M. A. M., Rizman, Z. I., & Abidin, H. Z. (2017). Detection of asphyxia in infants using deep learning Convolutional Neural Network (CNN) trained on Mel Frequency Cepstrum Coefficient (MFCC) features extracted from cry sounds. Journal of Fundamental and Applied Sciences, 9(3S), 768-778.