References
[1]. Bert C. W. (1982). Research on dynamics of composite sandwich plates. Shock and Vibration Digest, 14,17–34.
[2]. Mohamad S. Q. (2002). Recent research advances in the dynamic behavior of shell: 1989–2000, Part 1: Laminated composite shells. ASME Applied Mechanics Reviews 2002; 55(4),325–350.
[3]. Yang H. T. Y., Saigal S., Masud A., Kapania R.K. (2000). A survey of recent shell finite elements. International Journal for Numerical Methods in Engineering, 47, 101–127.
[4]. R F Gibson. (1983). 'Recent Research on Dynamic Mechanical Properties of Fibre Reinforced composite Materials and Structures.' Shock and Vibration Digest, vol 15, No 2, pp 3.
[5]. A A Khdeir. (1988). 'Free Vibration and Buckling of Symmetric Crossply Laminated Plates by an Exact Method.' Journal of Sound and Vibration, Vol 126, No 3, 1988, p 447.
[6]. S Latheswary, K. V. Valsarajan,Y. V. K. S Rao., (2004). Free Vibration Analysis of Laminated Plates using Higher-order Shear Deformation Theory. IE(I) Journal-AS, Vol 85, May.
[7]. M. Ganapathi, mit Kalyani., Bhaskar Mondal and T. Prakash. (2009). Free vibration analysis of simply supported composite laminated panels. Composite Structures, 90, pp 100–103.
[8]. M. Rastgaar Aagaah, M. Mahinfalah and G. Nakhaie Jazar,(2003). Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory. Composite Structures, 62, pp. 27–39.
[9]. Timothy W. Taylor and Adnan H. Nayfeh, (1996). The vibration characteristics of thick rectangular multilayered plates. Composites Part B, Vol. 27B p.623-631.
[10]. H. R. H. Kabir, (1999). 'On the Frequency Response of Moderately Thick Simply-supported Rectangular Plates with Arbitrary Lamination. International Journal of Solids and Structures, Vol 36, p 22-85.
[11]. Xiang S., Wang K. M. (2009). Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF, Thin-Walled structures, 47, 304-310.
[12]. Liew, K.M.(1996). “Solving the vibation of thick symmetric laminates by reissner/mindlin plate theory and the p-ritz method” Journal of Sound and Vibration, 198(3), 343-360.
[13]. K Kamal and S Durvasula. (1986). 'Some Studies on Free Vibration of Composite Laminates.' Composite Structures, Vol 5, p 177.
[14]. J N Reddy and N D Phan. (1985). 'Stability and Vibration of Isotropic and Laminated Plates According to a Higher-order Shear Deformation Theory. Journal of Sound and Vibration, Vol 98, p 157.
[15]. Zhang, Y.X. and Yang, C.H. (2009). “Recent developments in finite element analysis for laminated composite plates” Composite Structures 88 147–157.
[16]. T Kant and Mallikarjuna. (1989). 'A Higher-order Theory for free Vibration of Unsymmetrically Laminated Composite and Sandwich Plates–Finite Element Evaluations.' Computers and Structures, Vol 32, no 5, p 1125.
[17]. A K Ghosh and S S Dey. (1994). 'Free Vibration of Laminated Composite Plates – A Simple Finite Element Based on Higher- order Theory.' Computers and Structures, Vol .52, No. 3, p 397.
[18]. S. A. Ambartsumyan. (1970). 'Theory of Anisotropic Plates', Technomic, Stanford, CT.
[19]. Reddy J.N. (2004). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York.
[20]. Reddy J.N., Khdeir A.A. (1989). Buckling and vibration of laminated composite plates using various plate theories. AIAA J, 27,1808–17.
[21]. Hadian J, Nayfeh AH.(1993). Free vibration and buckling of shear deformable cross-ply laminated plates using state-space concept. Comp Struct, 4, 677–93.
[22]. Qatu MS.(1991). Free vibration of laminated composite rectangular plates. Int J Solids Struct, 28(8), 941–54.